et El I T - n Lote ﬂF&HﬁPE-
rf!’ulw#ﬂur

0mp

— 1ce

11—*"""(_) .‘
MgbINE - Jﬁ \1:'\"-‘1\ H ‘ F

é

HOW TO DESIGN PROGRAMS

AN INTRODUCTION TO PROGRAMMING AND COMPUTING
SECOND EDITION

Matthias Felleisen
Robert Bruce Findler
Matthew Flatt

Shriram Krishnamurthi

The MIT Press
Cambridge, Massachusetts
London, England

©2018 Massachusetts Institute of Technology

[lustrations ©2000 Torrey Butzer

This work is licensed to the public under a Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 license (international):
http://creativecommons.org/licenses/by-nc-nd/4.0/

All rights reserved except as licensed pursuant to the Creative Commons license
identified above. Any reproduction or other use not licensed as above, by any
electronic or mechanical means (including but not limited to photocopying,
public distribution, online display, and digital information storage and retrieval)
requires permission in writing from the publisher.

This book was set in Scribble and LaTeX by the authors.
Library of Congress Cataloging-in-Publication Data Names: Felleisen, Matthias.

Title: How to design programs: an introduction to programming and computing /
Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram
Krishnamurthi.

Description: Second edition. | Cambridge, MA: The MIT Press, [2017] | Revised
edition of: How to design programs / Matthias Felleisen ... [et al.]. 2001. |
Includes bibliographical references and index.

Identifiers: LCCN 2017018384 | ISBN 9780262534802 (pbk.: alk. paper)

Subjects: LCSH: Computer programming. | Electronic data processing.

Classification: LCC QA76.6.H697 2017 | DDC 005.1/2—dc23

L.C record available at https://Iccn.loc.gov/2017018384

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://lccn.loc.gov/2017018384

Contents

Preface
Systematic Program Design
DrRacket and the Teaching Languages
Skills that Transfer
This Book and Its Parts
The Differences

Prologue: How to Program
Arithmetic and Arithmetic
Inputs and Output
Many Ways to Compute
One Program, Many Definitions
One More Definition
You Are a Programmer Now
Not!

I Fixed-Size Data

1 Arithmetic

1.1 The Arithmetic of Numbers
1.2 The Arithmetic of Strings
1.3 Mixing It Up

1.4 The Arithmetic of Images
1.5 The Arithmetic of Booleans
1.6 Mixing It Up with Booleans
1.7 Predicates: Know Thy Data

2 Functions and Programs

3

4

5

2.1
2.2
2.3
2.4
2.5

Functions

Computing
Composing Functions
Global Constants
Programs

How to Design Programs

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Intervals, Enumerations, and Itemizations

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Designing Functions

Finger Exercises: Functions
Domain Knowledge

From Functions to Programs
On Testing

Designing World Programs
Virtual Pet Worlds

Programming with Conditionals
Computing Conditionally
Enumerations

Intervals

[temizations

Designing with Itemizations
Finite State Worlds

Adding Structure

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

From Positions to posn Structures
Computing with posns
Programming with posn

Defining Structure Types
Computing with Structures
Programming with Structures
The Universe of Data

Designing with Structures
Structure in the World

5.10 A Graphical Editor
5.11 More Virtual Pets

6 Itemizations and Structures

6.1
6.2
6.3
6.4
6.5

Designing with Itemizations, Again
Mixing Up Worlds

Input Errors

Checking the World

Equality Predicates

7 Summary

Intermezzo 1: Beginning Student Language

II Arbitrarily Large Data

8 Lists

8.1
8.2
8.3
8.4

Creating Lists

What Is ' (), What Is cons
Programming with Lists
Computing with Lists

9 Designing with Self-Referential Data Definitions

9.1
9.2
9.3
9.4
9.5
9.6

Finger Exercises: Lists
Non-empty Lists
Natural Numbers
Russian Dolls

Lists and World

A Note on Lists and Sets

10 More on Lists
10.1 Functions that Produce Lists
10.2 Structures in Lists
10.3 Lists in Lists, Files
10.4 A Graphical Editor, Revisited

11 Design by Composition
11.1 The 1ist Function
11.2 Composing Functions
11.3 Auxiliary Functions that Recur

11.4 Auxiliary Functions that Generalize

12 Projects: Lists
12.1 Real-World Data: Dictionaries
12.2 Real-World Data: iTunes
12.3 Word Games, Composition Illustrated
12.4 Word Games, the Heart of the Problem
12.5 Feeding Worms
12.6 Simple Tetris
12.7 Full Space War
12.8 Finite State Machines

13 Summary
Intermezzo 2: Quote, Unquote

III Abstraction

14 Similarities Everywhere
14.1 Similarities in Functions
14.2 Different Similarities
14.3 Similarities in Data Definitions
14.4 Functions Are Values
14.5 Computing with Functions

15 Designing Abstractions
15.1 Abstractions from Examples
15.2 Similarities in Signatures
15.3 Single Point of Control
15.4 Abstractions from Templates

16 Using Abstractions
16.1 Existing Abstractions
16.2 Local Definitions
16.3 Local Definitions Add Expressive Power
16.4 Computing with local
16.5 Using Abstractions, by Example

17

18

16.6 Designing with Abstractions
16.7 Finger Exercises: Abstraction
16.8 Projects: Abstraction

Nameless Functions

17.1 Functions from lambda
17.2 Computing with lambda
17.3 Abstracting with lambda
17.4 Specifying with lambda
17.5 Representing with lambda

Summary

Intermezzo 3: Scope and Abstraction

IV Intertwined Data

19

20

21

22

The Poetry of S-expressions

19.1 Trees

19.2 Forests

19.3 S-expressions

19.4 Designing with Intertwined Data
19.5 Project: BSTs

19.6 Simplifying Functions

Iterative Refinement

20.1 Data Analysis

20.2 Refining Data Definitions
20.3 Refining Functions

Refining Interpreters

21.1 Interpreting Expressions
21.2 Interpreting Variables
21.3 Interpreting Functions
21.4 Interpreting Everything

Project: The Commerce of XML

22.1 XML as S-expressions

22.2 Rendering XML Enumerations
22.3 Domain-Specific Languages
22.4 Reading XML

23 Simultaneous Processing

23.1 Processing Two Lists Simultaneously: Case 1

23.2 Processing Two Lists Simultaneously: Case 2

23.3 Processing Two Lists Simultaneously: Case 3

23.4 Function Simplification

23.5 Designing Functions that Consume Two Complex Inputs
23.6 Finger Exercises: Two Inputs

23.7 Project: Database

24 Summary

Intermezzo 4: The Nature of Numbers

\Y%
25

26

27

28

Generative Recursion

Non-standard Recursion
25.1 Recursion without Structure
25.2 Recursion that Ignores Structure

Designing Algorithms

26.1 Adapting the Design Recipe

26.2 Termination

26.3 Structural versus Generative Recursion
26.4 Making Choices

Variations on the Theme
27.1 Fractals, a First Taste
27.2 Binary Search

27.3 A Glimpse at Parsing

Mathematical Examples
28.1 Newton’s Method

28.2 Numeric Integration
28.3 Project: Gaussian Elimination

29 Algorithms that Backtrack
29.1 Traversing Graphs
29.2 Project: Backtracking

30 Summary
Intermezzo 5: The Cost of Computation

VI Accumulators

31 The Loss of Knowledge
31.1 A Problem with Structural Processing
31.2 A Problem with Generative Recursion

32 Designing Accumulator-Style Functions
32.1 Recognizing the Need for an Accumulator
32.2 Adding Accumulators
32.3 Transforming Functions into Accumulator Style
32.4 A Graphical Editor, with Mouse

33 More Uses of Accumulation
33.1 Accumulators and Trees
33.2 Data Representations with Accumulators
33.3 Accumulators as Results

34 Summary

Epilogue: Moving On
Computing
Program Design
Onward, Developers and Computer Scientists
Onward, Accountants, Journalists, Surgeons, and Everyone Else

Index

List of Figures

Figure 1: The basic steps of a function design recipe Figure 2: The dependencies
among parts and intermezzos Figure 3: Meet DrRacket

Figure 4: Landing a rocket (version 1) Figure 5: Landing a rocket (version 2)
Figure 6: Landing a rocket (version 3) Figure 7: Landing a rocket (version 4)
Figure 8: Landing a rocket (version 5) Figure 9: Landing a rocket (version 6)
Figure 10: Laws of image creation Figure 11: The DrRacket stepper

Figure 12: A batch program

Figure 13: How big-bang works Figure 14: A first interactive program Figure
15: From information to data, and back Figure 16: The completion of design step
5

Figure 17: Testing in BSL

Figure 18: The wish list for designing world programs Figure 19: Examples for a
moving car program Figure 20: Recall from “One Program, Many Definitions”

Figure 21: Conditional functions and special enumerations Figure 22: UFO,
descending

Figure 23: Rendering with a status line Figure 24: Rendering with a status line,
revised Figure 25: Launching a countdown and a liftoff Figure 26: How a traffic
light functions Figure 27: A symbolic traffic light Figure 28: A transition
diagram for a door with an automatic closer Figure 29: A Cartesian point

Figure 30: The universe of data

Figure 31: Adding structure to a universe Figure 32: Rendering space invader
game states, by example Figure 33: The complete rendering function Figure 34:
Rendering game states again Figure 35: Rendering the space invader games,
with tanks Figure 36: Two ways of writing a data definition for FSMs Figure 37:
A finite state machine as a diagram Figure 38: The universe of BSL data Figure
39: BSL core vocabulary

Figure 40: BSL core grammar

Figure 41: Syntactic naming conventions Figure 42: Replacing equals by equals
Figure 43: BSL, full grammar

Figure 44: Building a list
Figure 45: Drawing a list

Figure 46: List primitives

Figure 47: Searching a list

Figure 48: Computing with lists, step 1
Figure 49: Computing with lists, step 2
Figure 50: Computing with lists, step 3

Figure 51: Arrows for self-references in data definitions and templates Figure
52: How to translate a data definition into a template Figure 53: How to turn a
template into a function definition Figure 54: Turning a template into a function,
the table method Figure 55: Tabulating arguments, intermediate values, and
results Figure 56: Designing a function for self-referential data Figure 57: A
table for cat

Figure 58: A table for sorted>?
Figure 59: Creating a list of copies Figure 60: Random attacks

Figure 61: A list-based world program Figure 62: Two data representations for
sets Figure 63: Functions for the two data representations of sets Figure 64:
Computing the wages of all employees Figure 65: Computing the wages from
work records Figure 66: Things take time

Figure 67: Reading files

Figure 68: Counting the words on a line Figure 69: Encoding strings
Figure 70: Transpose a matrix

Figure 71: Tabulating for rev

Figure 72: Sorting lists of numbers Figure 73: Drawing a polygon
Figure 74: Reading a dictionary

Figure 75: Representing iTunes tracks as structures (the structures) Figure 76:
Representing iTunes tracks as structures (the functions) Figure 77: Representing
iTunes tracks as lists Figure 78: Finding alternative words Figure 79: Playing
Worm

Figure 80: Random placement of food Figure 81: Simple Tetris

Figure 82: Representing and interpreting finite state machines in general Figure
83: A simplistic HTML generator Figure 84: A data representation based on
nested lists Figure 85: A web page generated with BSL+

Figure 86: Two similar functions Figure 87: Two similar functions, revisited

Figure 88: Two more similar functions Figure 89: Finding the inf and sup in a
list of numbers Figure 90: A pair of similar functions Figure 91: The same two
similar functions, abstracted Figure 92: The similar functions for exercise 250

Figure 93: The similar functions for exercise 251
Figure 94: The similar functions for exercise 252

Figure 95: ISL’s abstract functions for list processing (1) Figure 96: ISL’s
abstract functions for list processing (2) Figure 97: Creating a program with
abstractions Figure 98: Organizing a function with local

Figure 99: Organizing interconnected function definitions with local

Figure 100: Using local may improve performance Figure 101: A function on
inventories, see exercise 261

Figure 102: Power from local function definitions Figure 103: A general sorting
function Figure 104: A curried predicate for checking the ordering of a list
Figure 105: Drawing lexical scope contours for exercise 301

Figure 106: Drawing lexical scope contours for exercise 301 (version 2) Figure
107: ISL+ extended with for loops Figure 108: A compact definition of
arrangements with for*/list

Figure 109: Constructing sequences of natural numbers Figure 110: ISL+ match
expressions Figure 111: A family tree

Figure 112: A data representation of the sample family tree Figure 113: Finding
a blue-eyed child in an ancestor tree Figure 114: Calculating with trees Figure
115: Finding a blue-eyed child in a family forest Figure 116: A template for S-
expressions Figure 117: A program for S-expressions Figure 118: Arrows for
nests of data definitions and templates Figure 119: A binary search tree and a
binary tree Figure 120: A program to be simplified Figure 121: Program
simplification, step 1

Figure 122: Program simplification, steps 2 and 3

Figure 123: A sample directory tree Figure 124: Representing BSL expressions
in BSL

Figure 125: From S-expr to BSL-expr Figure 126: The complete definition of
xexpr-attr

Figure 127: A realistic data representation of XML enumerations Figure 128:
Refining functions to match refinements of data definitions Figure 129: Finite

state machines, revisited Figure 130: Interpreting a DSL program Figure 131: A
file with a machine configuration Figure 132: Reading X-expressions Figure
133: Web data as an event Figure 134: Indexing into a list Figure 135: Indexing
into a list, simplified Figure 136: A simple hangman game Figure 137:
Databases as tables Figure 138: Databases as ISL+ data Figure 139: The result of
systematic expression hoisting Figure 140: A template for project

Figure 141: Database projection Figure 142: Database projection Figure 143:
Functions for inexact representations Figure 144: A Janus-faced series of inexact
numbers Figure 145: The graph of oscillate

Figure 146: Useless templates for breaking up strings into chunks Figure 147:
Generative recursion Figure 148: A graphical illustration of the quick-sort
algorithm Figure 149: The quick-sort algorithm Figure 150: The table-based
guessing approach for combining solutions Figure 151: Designing algorithms
(part 1) Figure 152: Designing algorithms (part 2) Figure 153: From generative
to structural recursion Figure 154: Finding the greatest common divisor via
structural recursion Figure 155: Finding the greatest common divisor via
generative recursion Figure 156: The Sierpinski triangle Figure 157: The
Sierpinski algorithm Figure 158: A numeric function f with root in interval [a,b]
(stage) Figure 159: The find-root algorithm Figure 160: Translating a file into a
list of lines Figure 161: The Newton process

Figure 162: The graph of poly on the interval [-1,5]

Figure 163: Distance traveled with constant vs accelerating speed Figure 164:
Integrating a function f between a and b Figure 165: A generic integration
function Figure 166: A candidate for adaptive integration Figure 167: A data
representation for systems of equations Figure 168: A directed graph

Figure 169: Finding a path in a graph Figure 170: A directed graph with cycle
Figure 171: A definition of arrangements using generative recursion Figure
172: A chess board with a single queen and the positions it threatens Figure 173:
Three queen configurations for a 3 by 3 chess board Figure 174: Solutions for
the n queens puzzle for 4 by 4 and 5 by 5 boards Figure 175: Solutions for the 4
queens puzzle Figure 176: A comparison of two running time expressions Figure
177: Converting relative distances to absolute distances Figure 178: Converting
relative distances with an accumulator Figure 179: A simple graph

Figure 180: Finding a path in a simple graph Figure 181: Finding a path in a

simple graph with an accumulator Figure 182: Design with accumulators, a
structural example Figure 183: Calculating with accumulator-style templates
Figure 184: Some stripped-down binary trees Figure 185: The accumulator-style
version of height Figure 186: Lam terms as trees

Figure 187: Finding undeclared variables Figure 188: Static distances
Figure 189: An implementation of lists in BSL

Figure 190: Creating a game tree Figure 191: Accumulators as results of
generative recursions, a skeleton Figure 192: Accumulators as results of
generative recursion, the function

PREFACE

Many professions require some form of programming. Accountants program
spreadsheets; musicians program synthesizers; authors program word
processors; and web designers program style sheets. When we wrote these words
for the first edition of the book (1995-2000), readers may have considered them
futuristic; by now, programming has become a required skill and numerous
outlets—books, on-line courses, K-12 curricula—cater to this need, always with
the goal of enhancing people’s job prospects.

The typical course on programming teaches a “tinker until it works”
approach. When it works, students exclaim “It works!” and move on. Sadly, this
phrase is also the shortest lie in computing, and it has cost many people many
hours of their lives. In contrast, this book focuses on habits of good
programming, addressing both professional and vocational programmers.

By “good programming,” we mean an approach to the creation of software
that relies on systematic thought, planning, and understanding from the very
beginning, at every stage, and for every step. To emphasize the point, we speak
of systematic program design and systematically designed programs. Critically,
the latter articulates the rationale of the desired functionality. Good
programming also satisfies an aesthetic sense of accomplishment; the elegance
of a good program is comparable to time-tested poems or the black-and-white
photographs of a bygone era. In short, programming differs from good
programming like crayon sketches in a diner from oil paintings in a museum.

No, this book won’t turn anyone into a master painter. But, we would not
have spent fifteen years writing this edition if we didn’t believe that

everyone can design programs

and
everyone can experience the satisfaction that comes with creative design.
Indeed, we go even further and argue that

program design—but not programming—deserves the same role in a liberal-
arts education as mathematics and language skills.

A student of design who never touches a program again will still pick up
universally useful problem-solving skills, experience a deeply creative activity,
and learn to appreciate a new form of aesthetic. The rest of this preface explains
in detail what we mean with “systematic design,” who benefits in what manner,
and how we go about teaching it all.

Systematic Program Design

A program interacts with people, dubbed users, and other programs, in which
case we speak of server and client components. Hence any reasonably complete
program consists of many building blocks: some deal with input, some create
output, while some bridge the gap between those two. We choose to use
functions as fundamental building blocks because everyone encounters functions
in pre-algebra and because the simplest programs are just such functions. The
key is to discover which functions are needed, how to connect them, and how to
build them from basic ingredients.

In this context, “systematic program design” refers to a mix of two concepts:
design recipes and iterative refinement. The design recipes are a creation of the
authors, and here they enable the use of the latter.

We drew inspiration from Michael Jackson’s method for creating COBOL programs plus
conversations with Daniel Friedman on recursion, Robert Harper on type theory, and Daniel Jackson
on software design.

Design Recipes apply to both complete programs and individual functions.
This book deals with just two recipes for complete programs: one for programs
with a graphical user interface (GUI) and one for batch programs. In contrast,

design recipes for functions come in a wide variety of flavors: for atomic forms
of data such as numbers; for enumerations of different kinds of data; for data that
compounds other data in a fixed manner; for finite but arbitrarily large data; and
SO On.

The function-level design recipes share a common design process. Figure 1
displays its six essential steps. The title of each step specifies the expected
outcome(s); the “commands” suggest the key activities. Examples play a central
role at almost every stage. For the chosen data representation in step 1, writing
down examples proves how real-world information is encoded as data and how
data is interpreted as information. Step 3 says that a problem-solver must work
through concrete scenarios to gain an understanding of what the desired function
is expected to compute for specific examples. This understanding is exploited in
step 5, when it is time to define the function. Finally, step 6 demands that
examples are turned into automated test code, which ensures that the function
works properly for some cases. Running the function on real-world data may
reveal other discrepancies between expectations and results.

1. From Problem Analysis to Data Definitions

Identity the information that must be represented and how it is represented in the chosen pro-

gramming language. Formulate data definitions and illustrate them with examples.

2. Signature, Purpose Statement, Header

State what kind of data the desired function consumes and produces. Formulate a concise an-
swer to the question what the function computes. Define a stub that lives up to the signature.

3. Functional Examples
Work through examples that illustrate the function’s purpose.
4. Function Template
Translate the data definitions into an outline of the function.
5. Function Definition
Fill in the gaps in the function template. Exploit the purpose statement and the examples.
6. Testing

Articulate the examples as tests and ensure that the function passes all. Doing so discovers
mistakes. Tests also supplement examples in that they help others read and understand the

definition when the need arises—and it will arise for any serious program.

Figure 1: The basic steps of a function design recipe

Instructors Have students copy figure 1 on one side of an index card. When students are stuck, ask
them to produce their card and point them to the step where they are stuck.

Each step of the design process comes with pointed questions. For certain
steps—say, the creation of the functional examples or the template—the
questions may appeal to the data definition. The answers almost automatically
create an intermediate product. This scaffolding pays off when it comes time to
take the one creative step in the process: the completion of the function
definition. And even then, help is available in almost all cases.

Instructors The most important questions are those for steps 4 and 5. Ask students to write down
these questions in their own words on the back of their index card.

The novelty of this approach is the creation of intermediate products for

beginner-level programs. When a novice is stuck, an expert or an instructor can
inspect the existing intermediate products. The inspection is likely to use the
generic questions from the design process and thus drive the novice to correct
himself or herself. And this self-empowering process is the key difference
between programming and program design.

Iterative Refinement addresses the issue that problems are complex and
multifaceted. Getting everything right at once is nearly impossible. Instead,
computer scientists borrow iterative refinement from the physical sciences to
tackle this design problem. In essence, iterative refinement recommends
stripping away all inessential details at first and finding a solution for the
remaining core problem. A refinement step adds in one of these omitted details
and re-solves the expanded problem, using the existing solution as much as
possible. A repetition, also called an iteration, of these refinement steps
eventually leads to a complete solution.

In this sense, a programmer is a miniscientist. Scientists create approximate
models for some idealized version of the world to make predictions about it. As
long as the model’s predictions come true, everything is fine; when the predicted
events differ from the actual ones, scientists revise their models to reduce the
discrepancy. In a similar vein, when programmers are given a task, they create a
first design, turn it into code, evaluate it with actual users, and iteratively refine
the design until the program’s behavior closely matches the desired product.

This book introduces iterative refinement in two different ways. Since
designing via refinement becomes useful even when the design of programs
becomes complex, the book introduces the technique explicitly in the fourth part,
once the problems acquire a certain degree of difficulty. Furthermore, we use
iterative refinement to state increasingly complex variants of the same problem
over the course of the first three parts of the book. That is, we pick a core
problem, deal with it in one chapter, and then pose a similar problem in a
subsequent chapter—with details matching the newly introduced concepts.

DrRacket and the Teaching Languages

Learning to design programs calls for repeated hands-on practice. Just as nobody
becomes a piano player without playing the piano, nobody becomes a program
designer without creating actual programs and getting them to work properly.
Hence, our book comes with a modicum of software support: a language in

which to write down programs and a program development environment with
which programs are edited like word documents and with which readers can run
programs.

Many people we encounter tell us they wish they knew how to code and then
ask which programming language they should learn. Given the press that some
programming languages get, this question is not surprising. But it is also wholly
inappropriate. Learning to program in a currently fashionable programming
language often sets up students for eventual failure. Fashion in this world is
extremely short lived. A typical “quick programming in X” book or course fails
to teach principles that transfer to the next fashion language. Worse, the
language itself often distracts from the acquisition of transferable skills, at the
level of both expressing solutions and dealing with programming mistakes.

Instructors For courses not aimed at beginners, it may be possible to use an off-the-shelf language
with the design recipes.

In contrast, learning to design programs is primarily about the study of
principles and the acquisition of transferable skills. The ideal programming
language must support these two goals, but no off-the-shelf industrial language
does so. The crucial problem is that beginners make mistakes before they know
much of the language, yet programming languages always diagnose these errors
as if the programmer already knew the whole language. As a result, diagnosis
reports often stump beginners.

Our solution is to start with our own tailor-made teaching language, dubbed
“Beginning Student Language” or BSL. The language is essentially the
“foreign” language that students acquire in pre-algebra courses. It includes
notation for function definitions, function applications, and conditional
expressions. Also, expressions can be nested. This language is thus so small that
an error diagnosis in terms of the whole language is still accessible to readers
with nothing but pre-algebra under their belt.

Instructors You may wish to explain that BSL is pre-algebra with additional forms of data and a host
of pre-defined functions on those.

A student who has mastered the structural design principles can then move

on to “Intermediate Student Language” and other advanced dialects, collectively
dubbed *sL. The book uses these dialects to teach design principles of
abstraction and general recursion. We firmly believe that using such a series of
teaching languages provides readers with a superior preparation for creating
programs for the wide spectrum of professional programming languages
(JavaScript, Python, Ruby, Java, and others).

Note The teaching languages are implemented in Racket, a programming
language we built for building programming languages. Racket has escaped
from the lab into the real world, and it is a programming vehicle of choice in a
variety of settings, from gaming to the control of telescope arrays. Although the
teaching languages borrow elements from the Racket language, this book does
not teach Racket. Then again, a student who has completed this book can easily
move on to Racket. End

When it comes to programming environments, we face an equally bad choice
as the one for languages. A programming environment for professionals is
analogous to the cockpit of a jumbo jet. It has numerous controls and displays,
overwhelming anyone who first launches such a software application. Novice
programmers need the equivalent of a two-seat, single-engine propeller aircraft
with which they can practice basic skills. We have therefore created DrRacket, a
programming environment for novices.

DrRacket supports highly playful, feedback-oriented learning with just two
simple interactive panes: a definitions area, which contains function definitions,
and an interactions area, which allows a programmer to ask for the evaluation of
expressions that may refer to the definitions. In this context, it is as easy to
explore “what if” scenarios as in a spreadsheet application. Experimentation can
start on first contact, using conventional calculator-style examples and quickly
proceeding to calculations with images, words, and other forms of data.

An interactive program development environment such as DrRacket
simplifies the learning process in two ways. First, it enables novice programmers
to manipulate data directly. Because no facilities for reading input information
from files or devices are needed, novices don’t need to spend valuable time on
figuring out how these work. Second, the arrangement strictly separates data and
data manipulation from input and output of information from the “real world.”
Nowadays this separation is considered so fundamental to the systematic design
of software that it has its own name: model-view-controller architecture. By
working in DrRacket, new programmers are exposed to this fundamental

software engineering idea in a natural way from the get-go.

Skills that Transfer

The skills acquired from learning to design programs systematically transfer in
two directions. Naturally, they apply to programming in general as well as to
programming spreadsheets, synthesizers, style sheets, and even word processors.
Our observations suggest that the design process from figure 1 carries over to
almost any programming language, and it works for 10-line programs as well as
for 10,000-line programs. It takes some reflection to adopt the design process
across the spectrum of languages and scale of programming problems; but once
the process becomes second nature, its use pays off in many ways.

Learning to design programs also means acquiring two kinds of universally
useful skills. Program design certainly teaches the same analytical skills as
mathematics, especially (pre)algebra and geometry. But, unlike mathematics,
working with programs is an active approach to learning. Creating software
provides immediate feedback and thus leads to exploration, experimentation, and
self-evaluation. The results tend to be interactive products, an approach that
vastly increases the sense of accomplishment when compared to drill exercises
in textbooks.

In addition to enhancing a student’s mathematical skills, program design
teaches analytical reading and writing skills. Even the smallest design tasks are
formulated as word problems. Without solid reading and comprehension skills, it
is impossible to design programs that solve a reasonably complex problem.
Conversely, program design methods force a creator to articulate his or her
thoughts in proper and precise language. Indeed, if students truly absorb the
design recipe, they enhance their articulation skills more than anything else.

To illustrate this point, take a second look at the process description in figure
1. It says that a designer must

1. analyze a problem statement, typically stated as a word problem;
2. extract and express its essence, abstractly;
3. illustrate the essence with examples;

4. make outlines and plans based on this analysis;

5. evaluate results with respect to expected outcomes; and
6. revise the product in light of failed checks and tests.

Each step requires analysis, precision, description, focus, and attention to
details. Any experienced entrepreneur, engineer, journalist, lawyer, scientist, or
any other professional can explain how many of these skills are necessary for his
or her daily work. Practicing program design—on paper and in DrRacket—is a
joyful way to acquire these skills.

Similarly, refining designs is not restricted to computer science and program
creation. Architects, composers, writers, and other professionals do it, too. They
start with ideas in their head and somehow articulate their essence. They refine
these ideas on paper until their product reflects their mental image as much as
possible. As they bring their ideas to paper, they employ skills analogous to fully
absorbed design recipes: drawing, writing, or piano playing to express certain
style elements of a building, describe a person’s character, or formulate portions
of a melody. What makes them productive with an iterative development process
is that they have absorbed their basic design recipes and learned how to choose
which one to use for the current situation.

This Book and Its Parts

The purpose of this book is to introduce readers without prior experience to the
systematic design of programs. In tandem, it presents a symbolic view of
computation, a method that explains how the application of a program to data
works. Roughly speaking, this method generalizes what students learn in
elementary school arithmetic and middle school algebra. But have no fear.
DrRacket comes with a mechanism—the algebraic stepper—that can illustrate
these step-by-step calculations.

The book consists of six parts separated by five intermezzos and is
bookended by a Prologue and an Epilogue. While the major parts focus on
program design, the intermezzos introduce supplementary concepts concerning
programming mechanics and computing.

The Prologue is a quick introduction to plain programming. It explains how
to write a simple animation in *SL. Once finished, any beginner is bound to feel
simultaneously empowered and overwhelmed. The final note therefore explains

why plain programming is wrong and how a systematic, gradual approach to
program design eliminates the sense of dread that every beginning programmer
usually experiences. Now the stage is set for the core of the book:

 Part I explains the most fundamental concepts of systematic design using
simple examples. The central idea is that designers typically have a rough
idea of what data the program is supposed to consume and produce. A
systematic approach to design must therefore extract as many hints as
possible from the description of the data that flows into and out of a
program. To keep things simple, this part starts with atomic data—
numbers, images, and so on—and then gradually introduces new ways of
describing data: intervals, enumerations, itemizations, structures, and
combinations of these.

* Intermezzo 1 describes the teaching language in complete detail: its
vocabulary, its grammar, and its meaning. Computer scientists refer to
these as syntax and semantics. Program designers use this model of
computation to predict what their creations compute when run or to
analyze error diagnostics.

* Part II extends part I with the means to describe the most interesting and
useful forms of data: arbitrarily large compound data. While a programmer
may nest the kinds of data from part I to represent information, the nesting
is always of a fixed depth and breadth. This part shows how a subtle
generalization gets us from there to data of arbitrary size. The focus then
switches to the systematic design of programs that process this kind of
data.

* Intermezzo 2 introduces a concise and powerful notation for writing down
large pieces of data: quotation and anti-quotation.

+ Part IIT acknowledges that many of the functions from part II look alike.
No programming language should force programmers to create pieces of
code that are so similar to each other. Conversely, every good
programming language comes with ways to eliminate such similarities.
Computer scientists call both the step of eliminating similarities and its
result abstraction, and they know that abstractions greatly increase a

programmer’s productivity. Hence, this part introduces design recipes for
creating and using abstractions.

* Intermezzo 3 plays two roles. On the one hand, it injects the concept of
lexical scope, the idea that a programming language ties every occurrence
of a name to a definition that a programmer can find with an inspection of
the code. On the other hand, it explains a library with additional
mechanisms for abstraction, including so-called for loops.

» Part IV generalizes part II and explicitly introduces the idea of iterative
refinement into the catalog of design concepts.

* Intermezzo 4 explains and illustrates why decimal numbers work in such
strange ways in all programming languages. Every budding programmer
ought to know these basic facts.

 Part V adds a new design principle. While structural design and abstraction
suffice for most problems that programmers encounter, they occasionally
lead to insufficiently “performant” programs. That is, structurally designed
programs might need too much time or energy to compute the desired
answers. Computer scientists therefore replace structurally designed
programs with programs that benefit from ad hoc insights into the problem
domain. This part of the book shows how to design a large class of just
such programs.

* Intermezzo 5 uses examples from part V to illustrate how computer
scientists think about performance.

» Part VI adds one final trick to the toolbox of designers: accumulators.
Roughly speaking, an accumulator adds “memory” to a function. The
addition of memory greatly improves the performance of structurally
designed functions from the first four parts of the book. For the ad hoc
programs from part V, accumulators can make the difference between
finding an answer and never finding one.

The Epilogue is both an assessment and a look ahead to what’s next.
Independent readers ought to work through the entire book, from the first

page to the last. We say “work” because we really mean that a reader ought to
solve all exercises or at least know how to solve them.

Similarly, instructors ought to cover as many elements as possible, starting
from the Prologue all the way through the Epilogue. Our teaching experience
suggests that this is doable. Typically, we organize our courses so that our
readers create a sizable and entertaining program over the course of the
semester. We understand, however, that some circumstances call for significant
cuts and that some instructors’ tastes call for slightly different ways to use the
book.

Figure 2 is a navigation chart for those who wish to pick and choose from the
elements of the book. The figure is a dependency graph. A solid arrow from one
element to another suggests a mandatory ordering; for example, Part II requires
an understanding of Part I. In contrast, a dotted arrow is mostly a suggestion; for

example, understanding the Prologue is unnecessary to get through the rest of
the book.

Prologue

Scope and Abstraction The Cost of Computation

Epilogue

Figure 2: The dependencies among parts and intermezzos

Based on this chart, here are three feasible paths through the book:

* A high school instructor may want to cover (as much as possible of) parts I
and II, including a small project such as a game.

* A college instructor in a quarter system may wish to focus on part I, part
I1, part III, and part V, plus the intermezzos on *SL and scope.

* A college instructor in a semester system may prefer to discuss
performance trade-offs in designs as early as possible. In this case, it is
best to cover part I and part II and then the accumulator material from part
VI that does not depend on part V. At that point, it is possible to discuss
intermezzo 5 and to study the rest of the book from this angle.

Iteration of Sample Topics The book revisits certain exercise and sample
topics time and again. For example, virtual pets are found all over part I and
even show up in part II. Similarly, both part I and part II cover alternative
approaches to implementing an interactive text editor. Graphs appear in part V
and immediately again in part VI. The purpose of these iterations is to motivate
iterative refinement and to introduce it through the backdoor. We urge
instructors to assign these themed sequences of exercises or to create their own
such sequences.

The Differences

This second edition of How to Design Programs differs from the first one in
several major aspects:

1. It explicitly acknowledges the difference between designing a whole
program and the functions that make up a program. Specifically, this
edition focuses on two kinds of programs: event-driven (mostly GUI, but
also networking) programs and batch programs.

2. The design of a program proceeds in a top-down planning phase followed
by a bottom-up construction phase. We explicitly show how the interface
to libraries dictates the shape of certain program elements. In particular,
the very first phase of a program design yields a wish list of functions.
While the concept of a wish list exists in the first edition, this second
edition treats it as an explicit design element.

3. Fulfilling an entry from the wish list relies on the function design recipe,
which is the subject of the six major parts.

4. A key element of structural design is the definition of functions that
compose others. This design-by-composition is especially useful for the
world of batch programs. Like generative recursion, it requires a eurekal,
specifically a recognition that the creation of intermediate data by one
function and processing this intermediate result by a second function
simplifies the overall design. This approach also needs a wish list, but
formulating these wishes calls for an insightful development of an
intermediate data definition. This edition of the book weaves in a number
of explicit exercises on design by composition.

We thank Kathi Fisler for calling our attention to this point.

5. While testing has always been a part of our design philosophy, the
teaching languages and DrRacket started supporting it properly only in
2002, just after we had released the first edition. This new edition heavily
relies on this testing support.

6. This edition of the book drops the design of imperative programs. The old
chapters remain available on-line. An adaptation of this material will
appear in the second volume of this series, How to Design Components.

7. The book’s examples and exercises employ new teachpacks. The preferred
style is to link in these libraries via require, but it is still possible to add
teachpacks via a menu in DrRacket.

8. Finally, this second edition differs from the first in a few aspects of
terminology and notation:

Second Edition First Edition

signature contract
itemization union
() empty
#true true

#false false

The last three differences greatly improve quotation for lists.

Acknowledgments from the First Edition

Four people deserve special thanks: Robert “Corky” Cartwright, who co-
developed a predecessor of Rice University’s introductory course with the first
author; Daniel P. Friedman, for asking the first author to rewrite The Little
LISPer (also MIT Press) in 1984, because it started this project; John Clements,
who designed, implemented, and maintains DrRacket’s stepper; and Paul
Steckler, who faithfully supported the team with contributions to our suite of
programming tools.

The development of the book benefited from many other friends and
colleagues who used it in courses and/or gave detailed comments on early drafts.
We are grateful to them for their help and patience: Ian Barland, John Clements,
Bruce Duba, Mike Ernst, Kathi Fisler, Daniel P. Friedman, John Greiner,
Géraldine Morin, John Stone, and Valdemar Tamez.

A dozen generations of Comp 210 students at Rice used early drafts of the
text and contributed improvements in various ways. In addition, numerous
attendees of our TeachScheme! workshops used early drafts in their classrooms.
Many sent in comments and suggestions. As representative of these we mention
the following active contributors: Ms. Barbara Adler, Dr. Stephen Bloch, Ms.
Karen Buras, Mr. Jack Clay, Dr. Richard Clemens, Mr. Kyle Gillette, Mr.
Marvin Hernandez, Mr. Michael Hunt, Ms. Karen North, Mr. Jamie Raymond,
and Mr. Robert Reid. Christopher Felleisen patiently worked through the first
few parts of the book with his father and provided direct insight into the views of
a young student. Hrvoje Blazevic (sailing, at the time, as Master of the LPG/C
Harriette), Joe Zachary (University of Utah), and Daniel P. Friedman (Indiana
University) discovered numerous typos in the first printing, which we have now
fixed. Thank you to everyone.

Finally, Matthias expresses his gratitude to Helga for her many years of
patience and for creating a home for an absent-minded husband and father.
Robby is grateful to Hsing-Huei Huang for her support and encouragement;
without her, he would not have gotten anything done. Matthew thanks Wen
Yuan for her constant support and enduring music. Shriram is indebted to Kathi
Fisler for support, patience and puns, and for her participation in this project.

Acknowledoments

A o o T e

As in 2001, we are grateful to John Clements for designing, validating,
implementing, and maintaining DrRacket’s algebraic stepper. He has done so for
nearly 20 years now, and the stepper has become an indispensable tool of
explanation and instruction.

Over the past few years, several colleagues have commented on the various
drafts and suggested improvements. We gratefully acknowledge the thoughtful
conversations and exchanges with these individuals:

Kathi Fisler (WPI and Brown University), Gregor Kiczales
(University of British Columbia), Prabhakar Ragde (University of
Waterloo), and Norman Ramsey (Tufts University).

Thousands of teachers and instructors attended our various workshops over the
years, and many provided valuable feedback. But Dan Anderson, Stephen Bloch,
Jack Clay, Nadeem Abdul Hamid, and Viera Proulx stand out, and we wish to
call out their role in the crafting of this edition.

Guillaume Marceau, working with Kathi Fisler and Shriram, spent many
months studying and improving the error messages in DrRacket. We are grateful
for his amazing work.

Celeste Hollenbeck is the most amazing reader ever. She never tired of
pushing back until she understood the prose. She never stopped until a section
supported its thesis, its organization matched, and its sentences connected.
Thank you very much for your incredible efforts.

We also thank the following: Saad Bashir, Steven Belknap, Stephen Bloch,
Joseph Bogart Tomas Cabrera, Estevo Castro, Stephen Chang, Jack Clay,
Richard Cleis, John Clements, Mark Engelberg, Christopher Felleisen, Sebastian
Felleisen, Vladimir Gaji¢, Adrian German, Ryan Golbeck, Jane Griscti, Alberto
E. F. Guerrero, Nadeem Abdul Hamid, Wayne Iba, Jordan Johnson, Marc
Kaufmann, Gregor Kiczales, Eugene Kohlbecker, Jackson Lawler, Ben Lerner,
Elena Machkasova, Jay Martin, Jay McCarthy, Ann E. Moskol, Paul Ojanen,
Klaus Ostermann, Alanna Pasco, S. Pehlivanoglu, David Porter, Norman
Ramsey, Ilnar Salimzianov, Brian Schack, Tubo Shi, Stephen Siegel, Kartik
Singhal, Marc Smith, Dave Smylie, Vincent St-Amour, Eric Tanter, Sam Tobin-
Hochstadt, Manuel del Valle, David Van Horn, Mitch Wand, Roelof Wobben,
and Andrew Zipperer for comments on drafts of this second edition.

The HTML layout at htdp.org is the work of Matthew Butterick, who

created these styles for our on-line documentation.

Finally, we are grateful to Ada Brunstein and Marie Lufkin Lee, our editors
at MIT Press, who gave us permission to develop this second edition of How to
Design Programs on the web. We also thank MIT’s Christine Bridget Savage
and John Hoey from Westchester Publishing Services for managing the final
production process. John Donohue, Jennifer Robertson, and Mark Woodworth
did a wonderful job of copy editing the manuscript.

copyiguHO 2600 ey bt

ProLoGUE: How TO PROGRAM

When you were a small child, your parents taught you to count and perform
simple calculations with your fingers: “1 + 1 is 2”; “1 + 2 is 3”; and so on. Then
they would ask “what’s 3 + 2?” and you would count off the fingers of one hand.
They programmed, and you computed. And in some way, that’s really all there is
to programming and computing.

Download DrRacket from its web site.

Now it is time to switch roles. Start DrRacket. Doing so brings up the
window of figure 3. Select “Choose language” from the “Language” menu,
which opens a dialog listing “Teaching Languages” for “How to Design
Programs.” Choose “Beginning Student” (the Beginning Student Language, or
BSL) and click OK to set up DrRacket. With this task completed, you can
program, and the DrRacket software becomes the child. Start with the simplest
of all calculations. You type

(+11)

into the top part of DrRacket, click RUN, and a 2 shows up in the bottom.

Untitled ¥ (define ...)~ w5 Step [2] Check Syntax 4 Run|> Stop [

Welcome to DrRacket, version 6.10 [3m]
Language: Beginning Student
2

>

Beginning Student™ 4:2 323.59 MB: W

Figure 3: Meet DrRacket

That’s how simple programming is. You ask questions as if DrRacket were a
child, and DrRacket computes for you. You can also ask DrRacket to process
several requests at once:

(+ 2 2)
(* 3 3)
(- 4 2)
(/ 6 2)

After you click RUN, you see 4 9 2 3 in the bottom half of DrRacket, which are
the expected results.
Let’s slow down for a moment and introduce some words:

» The top half of DrRacket is called the definitions area. In this area, you
create the programs, which is called editing. As soon as you add a word or
change something in the definitions area, the SAVE button shows up in the
top-left corner. When you click SAVE for the first time, DrRacket asks you
for the name of a file so that it can store your program for good. Once your
definitions area is associated with a file, clicking SAVE ensures that the
content of the definitions area is stored safely in the file.

* Programs consist of expressions. You have seen expressions in
mathematics. For now, an expression is either a plain number or something
that starts with a left parenthesis “(” and ends in a matching right
parenthesis “)”—which DrRacket rewards by shading the area between the
pair of parentheses.

* When you click RUN, DrRacket evaluates the expressions in the
definitions area and shows their result in the interactions area. Then,
DrRacket, your faithful servant, awaits your commands at the prompt (>).
The appearance of the prompt signals that DrRacket is waiting for you to
enter additional expressions, which it then evaluates like those in the
definitions area:

> (+11)
2

Enter an expression at the prompt, hit the “return” or “enter” key on your
keyboard, and watch how DrRacket responds with the result. You can do
so as often as you wish:

(+ 2 2)
(* 33)
(- 42)
(/ 6 2)
(sar 3)
(expt 2 3)

(sin 0)

VOoVowY OoVWwVNYVOoV MYV

(cos pi)
#i-1.0

Take a close look at the last number. Its “#i” prefix is short for “I don’t really
know the precise number so take that for now” or an inexact number. Unlike
your calculator or other programming systems, DrRacket is honest. When it

doesn’t know the exact number, it warns you with this special prefix. Later, we
will show you really strange facts about “computer numbers,” and you will then
truly appreciate that DrRacket issues such warnings.

By now you might be wondering whether DrRacket can add more than two
numbers at once, and yes, it can! As a matter of fact, it can do it in two different
ways:

> (+ 2 (+34))
9

> (+ 2 3 4)

9

The first one is nested arithmetic, as you know it from school. The second one is
BSL arithmetic; and the latter is natural, because in this notation you always use
parentheses to group operations and numbers together.

This book does not teach you Racket, even if the editor is called DrRacket. See the Preface, especially
the section on DrRacket and the Teaching Languages for details on the choice to develop our own
language.

In BSL, every time you want to use a “calculator operation,” you write down
an opening parenthesis, the operation you wish to perform, say +, the numbers
on which the operation should work (separated by spaces or even line breaks),
and, finally, a closing parenthesis. The items following the operation are called
the operands. Nested arithmetic means that you can use an expression for an
operand, which is why

> (+ 2 (+34))
9

is a fine program. You can do this as often as you wish:

> (+2 (+ (" 33) 4))

15

> (+ 2 (+ (* 3 (/12 4)) 4))

15

> (+ (" 55) (+ ("3 (/12 4)) 4))
38

There are no limits to nesting, except for your patience.

Naturally, when DrRacket calculates for you, it uses the rules that you know
and love from math. Like you, it can determine the result of an addition only
when all the operands are plain numbers. If an operand is a parenthesized
operator expression—something that starts with a “(” and an operation—it
determines the result of that nested expression first. Unlike you, it never needs to
ponder which expression to calculate first—because this first rule is the only rule
there is.

The price for DrRacket’s convenience is that parentheses have meaning. You
must enter all these parentheses, and you may not enter too many. For example,
while extra parentheses are acceptable to your math teacher, this is not the case
for BSL. The expression (+ (1) (2)) contains way too many parentheses, and
DrRacket lets you know in no uncertain terms:

> (+ (1) (2))
function call:expected a function after the open parenthesis, f
ound a number

Once you get used to BSL programming, though, you will see that it isn’t a
price at all. First, you get to use operations on several operands at once, if it is
natural to do so:

>(+123456789 0)
45
>(*123456789 0)
0

If you don’t know what an operation does for several operands, enter an example
into the interactions area and hit “return”; DrRacket lets you know whether and
how it works. Or use HelpDesk to read the documentation. Second, when you
read programs that others write, you will never have to wonder which
expressions are evaluated first. The parentheses and the nesting will immediately
tell you.

As you may have noticed, the names of operations in the on-line text are linked to the documentation
in HelpDesk.

In this context, to program is to write down comprehensible arithmetic
expressions, and to compute is to determine their value. With DrRacket, it is
easy to explore this kind of programming and computing.

Arithmetic and Arithmetic

If programming were just about numbers and arithmetic, it would be as boring as
mathematics. Fortunately, there is much more to programming than numbers:
text, truths, images, and a great deal more.

Just kidding: mathematics is a fascinating subject, but you won’t need much of it for now.

The first thing you need to know is that in BSL, text is any sequence of
keyboard characters enclosed in double quotes ("). We call it a string. Thus,
"hello world" is a perfectly fine string; and when DrRacket evaluates this
string, it just echoes it back in the interactions area, like a number:

> "hello world"
"hello world"

Indeed, many people’s first program is one that displays exactly this string.

Otherwise, you need to know that in addition to an arithmetic of numbers,
DrRacket also knows about an arithmetic of strings. So here are two interactions
that illustrate this form of arithmetic:

> (string-append "hello" "world")
"helloworld"
> (string-append "hello " "world")
"hello world"

Just like +, string-append is an operation; it makes a string by adding the
second to the end of the first. As the first interaction shows, it does this literally,
without adding anything between the two strings: no blank space, no comma,
nothing. Thus, if you want to see the phrase "hello world", you really need to
add a space to one of these words somewhere; that’s what the second interaction
shows. Of course, the most natural way to create this phrase from the two words
is to enter

(string-append "hello" " " "world")

because string-append, like +, can handle as many operands as desired.

You can do more with strings than append them. You can extract pieces from
a string, reverse them, render all letters uppercase (or lowercase), strip blank
spaces from the left and right, and so on. And best of all, you don’t have to
memorize any of that. If you need to know what you can do with strings, look up
the term in HelpDesk.

Use F1 or the drop-down menu on the right to open HelpDesk. Look at the manuals for BSL and its
section on pre-defined operations, especially those for strings.

If you looked up the primitive operations of BSL, you saw that primitive
(sometimes called pre-defined or built-in) operations can consume strings and
produce numbers:

> (+ (string-length "hello world") 20)
31

> (number->string 42)

I|42 n

There is also an operation that converts strings into numbers:

> (string->number "42")
42

If you expected “forty-two” or something clever along those lines, sorry, that’s
really not what you want from a string calculator.

The last expression raises a question, though. What if someone uses string-
>number with a string that is not a number wrapped within string quotes? In that
case, the operation produces a different kind of result:

> (string->number "hello world")
#false

This is neither a number nor a string; it is a Boolean. Unlike numbers and
strings, Boolean values come in only two varieties: #true and #false. The first
is truth, the second falsehood. Even so, DrRacket has several operations for

combining Boolean values:

> (and #true #true)
#true

> (and #true #false)
#false

> (or #true #false)
#true

> (or #false #false)
#false

> (not #false)

#true

and you get the results that the name of the operation suggests. (Don’t know
what and, or, and not compute? Easy: (and x y) is true if x and y are true; (or
x y) is true if either x or y or both are true; and (not x) results in #true
precisely when x is #false.)

It is also useful to “convert” two numbers into a Boolean:

> (> 10 9)
#true
> (< -1 0)
#true
> (= 42 9)
#false

Stop! Try the following three expressions: (>= 10 10), (<= -1 0), and
(string=? "design" "tinker"). This last one is different again; but don’t
worry, you can do it.

With all these new kinds of data—yes, numbers, strings, and Boolean values
are data—and operations floating around, it is easy to forget some basics, like
nested arithmetic:

(and (or (= (string-length "hello world")
(string—>number "11"))
(string=7? "hello world" "good morning"))

(> (+ (string-length "hello world") 60) 80))

What is the result of this expression? How did you figure it out? All by yourself?

Or did you just type it into DrRacket’s interactions area and hit the “return” key?
If you did the latter, do you think you would know how to do this on your own?
After all, if you can’t predict what DrRacket does for small expressions, you
may not want to trust it when you submit larger tasks than that for evaluation.

Before we show you how to do some “real” programming, let’s discuss one
more kind of data to spice things up: images. When you insert an image into the
interactions area and hit “return” like this

i

DrRacket replies with the image. In contrast to many other programming
languages, BSL understands images, and it supports an arithmetic of images just
as it supports an arithmetic of numbers or strings. In short, your programs can
calculate with images, and you can do so in the interactions area. Furthermore,
BSL programmers—Ilike the programmers for other programming languages—
create libraries that others may find helpful. Using such libraries is just like
expanding your vocabularies with new words or your programming vocabulary
with new primitives. We dub such libraries teachpacks because they are helpful
with teaching.

To insert images such as this rocket into DrRacket, use the Insert menu. Or, copy and paste the
image from your browser into DrRacket.

One important library—the 2htdp/image library—supports operations for
computing the width and height of an image:

@) (image—height é))

Once you have added the library to your program, clicking RUN gives you 1176
because that’s the area of a 28 by 42 image.

(* (image—width

Add (require 2htdp/image) to the definitions area, or select Add Teachpack from the Language
menu and choose image from the Preinstalled HtDP/2e Teachpack menu.

You don’t have to use Google to find images and insert them in your
DrRacket programs with the “Insert” menu. You can also instruct DrRacket to
create simple images from scratch:

> (circle 10 "solid" "red")

> (rectangle 30 20 "outline" "blue")

When the result of an expression is an image, DrRacket draws it into the
interactions area. But otherwise, a BSL program deals with images as data that is
just like numbers. In particular, BSL has operations for combining images in the
same way that it has operations for adding numbers or appending strings:

> (overlay (circle 5 "solid" "red")
(rectangle 20 20 "solid" "blue"))

Overlaying these images in the opposite order produces a solid blue square:

> (overlay (rectangle 20 20 "solid" "blue")
(circle 5 "solid" "red"))

Stop and reflect on this last result for a moment.

As you can see, overlay is more like string-append than +, but it does
“add” images just like string-append “adds” strings and + adds numbers. Here
is another illustration of the idea:

> (image-width (square 10 "solid" "red"))
10
> (image—width
(overlay (rectangle 20 20 "solid" "blue")
(circle 5 "solid" "red")))
20

These interactions with DrRacket don’t draw anything at all; they really just
measure their width.

Two more operations matter: empty-scene and place-image. The first
creates a scene, a special kind of rectangle. The second places an image into
such a scene:

(place—image (circle 5 "solid" "green")

50 80
(empty—scene 100 100))

and you get this:

Not quite. The image comes without a grid. We superimpose the grid on the empty scene so that you
can see where exactly the green dot is placed.

As you can see from this image, the origin (or (0,0)) is in the upper-left corner.
Unlike in mathematics, the y-coordinate is measured downward, not upward.
Otherwise, the image shows what you should have expected: a solid green disk
at the coordinates (50,80) in a 100 by 100 empty rectangle.

Let’s summarize again. To program is to write down an arithmetic
expression, but you’re no longer restricted to boring numbers. In BSL, arithmetic
is the arithmetic of numbers, strings, Booleans, and even images. To compute,
though, still means to determine the value of an expression—except that this
value can be a string, a number, a Boolean, or an image.

And now you’re ready to write programs that make rockets fly.

Inputs and Output

The programs you have written so far are pretty boring. You write down an
expression or several expressions; you click RUN; you see some results. If you
click RUN again, you see the exact same results. As a matter of fact, you can

click RUN as often as you want, and the same results show up. In short, your
programs really are like calculations on a pocket calculator, except that
DrRacket calculates with all kinds of data, not just numbers.

That’s good news and bad news. It is good because programming and
computing ought to be a natural generalization of using a calculator. It is bad
because the purpose of programming is to deal with lots of data and to get lots of
different results, with more or less the same calculations. (It should also compute
these results quickly, at least faster than we can.) That is, you need to learn more
still before you know how to program. No need to worry though: with all your
knowledge about arithmetic of numbers, strings, Boolean values, and images,
you’re almost ready to write a program that creates movies, not just some silly
program for displaying “hello world” somewhere. And that’s what we’re going
to do next.

Just in case you didn’t know, a movie is a sequence of images that are
rapidly displayed in order. If your algebra teachers had known about the
“arithmetic of images” that you saw in the preceding section, you could have
produced movies in algebra instead of boring number sequences. Well, here is
one more such table:

X = 1 2 3 4 b 6 7 8 9 10

y = 1 4 9 16 25 36 49 64 81 ?

Your teachers would now ask you to fill in the blank, that is, replace the “?”
mark with a number.

It turns out that making a movie is no more complicated than completing a
table of numbers like that. Indeed, it is all about such tables:

X = 1 2 3 :

y:

To be concrete, your teacher should ask you here to draw the fourth image, the
fifth, and the 1273rd one because a movie is just a lot of images, some 20 or 30

of them per second. So you need some 1200 to 1800 of them to make one
minute’s worth of it.

You may also recall that your teacher not only asked for the fourth or fifth
number in some sequence but also for an expression that determines any element
of the sequence from a given x. In the numeric example, the teacher wants to see
something like this:

Y= %

If you plug in 1, 2, 3, and so on for x, you get 1, 4, 9, and so on for y—just as the
table says. For the sequence of images, you could say something like

y = the image that contains a dot x2 pixels below the top.

The key is that these one-liners are not just expressions but functions.

At first glance, functions are like expressions, always with a y on the left,
followed by an = sign, and an expression. They aren’t expressions, however.
And the notation you often see in school for functions is utterly misleading. In
DrRacket, you therefore write functions a bit differently:

(define (y x) (* x X))

The define says “consider y a function,” which, like an expression, computes a
value. A function’s value, though, depends on the value of something called the
input, which we express with (y x). Since we don’t know what this input is, we
use a name to represent the input. Following the mathematical tradition, we use x
here to stand in for the unknown input; but pretty soon, we will use all kinds of
names.

This second part means you must supply one number—for x—to determine a
specific value for y. When you do, DrRacket plugs the value for x into the
expression associated with the function. Here the expression is (* x x). Once x
is replaced with a value, say 1, DrRacket can compute the result of the
expressions, which is also called the output of the function.

Mathematics also calls y(1) a function application, but your teachers forgot to tell you.

Click RUN and watch nothing happen. Nothing shows up in the interactions
area. Nothing seems to change anywhere else in DrRacket. It is as if you hadn’t
accomplished anything. But you did. You actually defined a function and
informed DrRacket about its existence. As a matter of fact, the latter is now
ready for you to use the function. Enter

(y 1)

at the prompt in the interactions area and watch a 1 appear in response. The (y
1) is called a function application in DrRacket. Try

(y 2)

and see a 4 pop out. Of course, you can also enter all these expressions in the
definitions area and click RUN:

(define (y x) (* x X))

(y 1)
(y 2)
(y 3)
(y 4)
(y 5)

In response, DrRacket displays: 1 4 9 16 25, which are the numbers from the
table. Now determine the missing entry.

What all this means for you is that functions provide a rather economic way
of computing lots of interesting values with a single expression. Indeed,
programs are functions; and once you understand functions well, you know
almost everything there is to know about programming. Given their importance,
let’s recap what we know about functions so far:

» First,
(define (FunctionName InputName) BodyExpression)

is a function definition. You recognize it as such because it starts with the
“define” keyword. It essentially consists of three pieces: two names and

an expression. The first name is the name of the function; you need it to
apply the function as often as you wish. The second name—called a
parameter—represents the input of the function, which is unknown until
you apply the function. The expression, dubbed body, computes the output
of the function for a specific input.

» Second,
(FunctionName ArgumentExpression)

is a function application. The first part tells DrRacket which function you
wish to use. The second part is the input to which you want to apply the
function. If you were reading a Windows or a Mac manual, it might tell
you that this expression “launches” the “application” called FunctionName
and that it is going to process ArgumentExpression as the input. Like all
expressions, the latter is possibly a plain piece of data or a deeply nested
expression.

Functions can input more than numbers, and they can output all kinds of
data, too. Our next task is to create a function that simulates the second table—
the one with images of a colored dot—just like the first function simulated the
numeric table. Since the creation of images from expressions isn’t something
you know from high school, let’s start simply. Do you remember empty-scene?
We quickly mentioned it at the end of the previous section. When you type it
into the interactions area, like that:

> (empty-scene 100 60)

DrRacket produces an empty rectangle, also called a scene. You can add images
to a scene with place-image:

A
> (place—-image Ef’i 50 23 (empty-scene 100 60))

A

Think of the rocket as an object that is like the dot in the above table from your
mathematics class. The difference is that a rocket is interesting.

Next, you should make the rocket descend, just like the dot in the above
table. From the preceding section, you know how to achieve this effect by
increasing the y-coordinate that is supplied to place-image:

A
> (place—-image la 50 20 (empty—-scene 100 60))
A

> (place—-image EQ 50 30 (empty-scene 100 60))

£2)

> (place-image Ea 50 40 (empty-scene 100 60))

£2)

All that’s needed now is to produce lots of these scenes easily and to display all
of them in rapid order.

The first goal can be achieved with a function, of course; see figure 4. Yes,
this is a function definition. Instead of vy, it uses the name picture-of-rocket, a
name that immediately tells you what the function outputs: a scene with a rocket.
Instead of x, the function definition uses height for the name of its parameter, a
name that suggests that it is a number and that it tells the function where to place
the rocket. The body expression of the function is exactly like the series of
expressions with which we just experimented, except that it uses height in place
of a number. And we can easily create all of those images with this one function:

(picture-of-rocket 0)
(picture-of-rocket 10)
(picture-of-rocket 20)
(picture-of-rocket 30)

(define (picture-of-rocket height)

@ 50 height (

(place—-image empty-scene 100 60)))

Figure 4: Landing a rocket (version 1)

Try this out in the definitions area or the interactions area; both create the
expected scenes.

In BSL, you can use all kinds of characters in names, including “-” and “.”.

The second goal requires knowledge about one additional primitive
operation from the 2htdp/universe library: animate. So, click RUN and enter the
following expression:

> (animate picture-of-rocket)

Stop and note that the argument expression is a function. Don’t worry for now
about using functions as arguments; it works well with animate, but don’t try to
define functions like animate at home just yet.

Don’t forget to add the 2htdp/universe library to your definitions area.

As soon as you hit the “return” key, DrRacket evaluates the expression; but it
does not display a result, not even a prompt. It opens another window—a canvas
—and starts a clock that ticks 28 times per second. Every time the clock ticks,
DrRacket applies picture-of-rocket to the number of ticks passed since this
function call. The results of these function calls are displayed in the canvas, and
it produces the effect of an animated movie. The simulation runs until you close
the window. At that point, animate returns the number of ticks that have passed.

The question is where the images on the window come from. The short
explanation is that animate runs its operand on the numbers o, 1, 2, and so on,
and displays the resulting images. The long explanation is this:

* animate starts a clock and counts the number of ticks;

* the clock ticks 28 times per second;

» every time the clock ticks, animate applies the function picture-of-
rocket to the current clock tick; and

* the scene that this application creates is displayed on the canvas.

This means that the rocket first appears at height o, then 1, then 2, and so on,
which explains why the rocket descends from the top of the canvas to the
bottom. That is, our three-line program creates some 100 pictures in about 3.5
seconds, and displaying these pictures rapidly creates the effect of a rocket
descending to the ground.

Exercise 298 explains how to design animate.

So here is what you learned in this section. Functions are useful because they
can process lots of data in a short time. You can launch a function by hand on a
few select inputs to ensure that it produces the proper outputs. This is called
testing a function. Or, DrRacket can launch a function on lots of inputs with the
help of some libraries; when you do that, you are running the function.
Naturally, DrRacket can launch functions when you press a key on your
keyboard or when you manipulate the mouse of your computer. To find out how,
keep reading. Whatever triggers a function application isn’t important, but do
keep in mind that (simple) programs are functions.

Many Ways to Compute

When you evaluate (animate picture-of-rocket), the rocket eventually
disappears into the ground. That’s plain silly. Rockets in old science fiction
movies don’t sink into the ground; they gracefully land on their bottoms, and the
movie should end right there.

This idea suggests that computations should proceed differently, depending
on the situation. In our example, the picture-of-rocket program should work
“as is” while the rocket is in flight. When the rocket’s bottom touches the bottom
of the canvas, however, it should stop the rocket from descending any farther.

In a sense, the idea shouldn’t be new to you. Even your mathematics teachers

define functions that distinguish various situations:

+1lifx >0
sign(x) = Oifx =0
—lifr <0

This sign function distinguishes three kinds of inputs: those numbers that are
larger than 0, those equal to 0, and those smaller than 0. Depending on the input,

the result of the function is +1, 0, or —1.
You can define this function in DrRacket without much ado using a

conditional expression:

(define (sign x)

(cond
[(> x 0) 1]
[(= x 0) O]

[(< x 0) -1]))

After you click RUN, you can interact with sign like any other function:

> (sign 10)
1

> (sign -5)
-1

> (sign 0)

0]

Open a new tab in DrRacket and start with a clean slate.

In general, a conditional expression has the shape

(cond
[ConditionExpressionl ResultExpressionl]
[ConditionExpression2 ResultExpression2]

[ConditionExpressionN ResultExpressionN])

This is a good time to explore what the STEP button does. Add (sign -5) to the definitions area and

click STEP for the above sign program. When the new window comes up, click the right and left
arrows there.

That is, a conditional expression consists of as many conditional lines as needed.
Each line contains two expressions: the left one is often called condition, and the
right one is called result; occasionally we also use question and answer. To
evaluate a cond expression, DrRacket evaluates the first condition expression,
ConditionExpressioni. If this yields #true, DrRacket replaces the cond
expression with ResultExpressioni, evaluates it, and uses the value as the
result of the entire cond expression. If the evaluation of conditionExpressioni
yields #false, DrRacket drops the first line and starts over. In case all condition
expressions evaluate to #false, DrRacket signals an error.

With this knowledge, you can now change the course of the simulation. The
goal is to not let the rocket descend below the ground level of a 100-by-60 scene.
Since the picture-of-rocket function consumes the height where it should
place the rocket in the scene, a simple test comparing the given height to the
maximum height appears to suffice.

See figure 5 for the revised function definition. The definition uses the name
picture-of-rocket.v2 to distinguish the two versions. Using distinct names
also allows us to use both functions in the interactions area and to compare the
results. Here is how the original version works:

> (picture—-of-rocket 5555)

(define (picture-of-rocket.v2 height)
(cond
[(<= height 60)

(place—-image 50 height
(empty—-scene 100 60))]
[(> height 60)

(place-image 50 60
(empty-scene 100 60))]))

Figure 5: Landing a rocket (version 2)

And here is the second one:

> (picture-of-rocket.v2 5555)

A
2

1=k

No matter what number you give to picture-of-rocket.v2, if it is over 60, you
get the same scene. In particular, when you run

> (animate picture-of-rocket.v2)

the rocket descends and sinks halfway into the ground before it stops.

Stop! What do you think we want to see?

Landing the rocket this far down is ugly. Then again, you know how to fix
this aspect of the program. As you have seen, BSL knows an arithmetic of
images. When place-image adds an image to a scene, it uses its center point as
if it were the whole image, even though the image has a real height and a real
width. As you may recall, you can measure the height of an image with the
operation image-height. This function comes in handy here because you really
want to fly the rocket only until its bottom touches the ground.

Putting one and one together you can now figure out that

(- 60 (/ (image-height ‘%) 2))

is the point at which you want the rocket to stop its descent. You could figure
this out by playing with the program directly, or you can experiment in the
interactions area with your image arithmetic.

Here is a first attempt:

(place—-image @ 50 (- 60 (image—-height @))
(empty—-scene 100 60))

Now replace the third argument in the above application with

(- 60 (/ (image-height ‘%) 2))

Stop! Conduct the experiments. Which result do you like better?

When you think and experiment along these lines, you eventually get to the
program in figure 6. Given some number, which represents the height of the
rocket, it first tests whether the rocket’s bottom is above the ground. If it is, it
places the rocket into the scene as before. If it isn’t, it places the rocket’s image
so that its bottom touches the ground.

(define (picture-of-rocket.v3 height)
(cond

@) 2)))

[(<= height (- 60 (/ (image-height

é 50 height

(empty—-scene 100 60))]

(place—-image

[(> height (- 60 (/ (image-height

é 50 (- 60 (/ (image-height é) 2))

(empty-scene 100 60))1]))

(place—-image

Figure 6: Landing a rocket (version 3)

One Program, Many Definitions

Now suppose your friends watch the animation but don’t like the size of your
canvas. They might request a version that uses 200-by-400 scenes. This simple
request forces you to replace 100 with 400 in five places in the program and 60
with 200 in two other places—not to speak of the occurrences of 50, which really
means “middle of the canvas.”

Stop! Before you read on, try to do just that so that you get an idea of how
difficult it is to execute this request for a five-line program. As you read on, keep
in mind that programs in the world consist of 50,000 or 500,000 or even
5,000,000 or more lines of program code.

In the ideal program, a small request, such as changing the sizes of the
canvas, should require an equally small change. The tool to achieve this
simplicity with BSL is define. In addition to defining functions, you can also
introduce constant definitions, which assign some name to a constant. The
general shape of a constant definition is straightforward:

(define Name Expression)

Thus, for example, if you write down

(define HEIGHT 60)

in your program, you are saying that HEIGHT always represents the number 60.
The meaning of such a definition is what you expect. Whenever DrRacket
encounters HEIGHT during its calculations, it uses 60 instead.

Now take a look at the code in figure 7, which implements this simple
change and also names the image of the rocket. Copy the program into
DrRacket; and after clicking RUN, evaluate the following interaction:

> (animate picture-of-rocket.v4)

Confirm that the program still functions as before.

(define (picture-of-rocket.v4 h)
(cond
[(<= h (- HEIGHT (/ (image-height ROCKET) 2)))
(place—-image ROCKET 50 h (empty-scene WIDTH HEIGHT))]
[(> h (- HEIGHT (/ (image—height ROCKET) 2)))
(place-image ROCKET
50 (- HEIGHT (/ (image-height ROCKET) 2))
(empty—-scene WIDTH HEIGHT))]))

(define WIDTH 100)
(define HEIGHT 60)

(define ROCKET ‘%)

Figure 7: Landing a rocket (version 4)

The program in figure 7 consists of four definitions: one function definition
and three constant definitions. The numbers 100 and 60 occur only twice—once
as the value of WIDTH and once as the value of HEIGHT. You may also have
noticed that it uses h instead of height for the function parameter of picture-
of-rocket.v4. Strictly speaking, this change isn’t necessary because DrRacket
doesn’t confuse height with HEIGHT, but we did it to avoid confusing you.

When DrRacket evaluates (animate picture-of-rocket.v4), it replaces
HEIGHT with 60, WIDTH with 100, and ROCKET with the image every time it
encounters these names. To experience the joys of real programmers, change the
60 next to HEIGHT into a 400 and click RUN. You see a rocket descending and
landing in a 100 by 400 scene. One small change did it all.

In modern parlance, you have just experienced your first program
refactoring. Every time you reorganize your program to prepare yourself for
likely future change requests, you refactor your program. Put it on your resume.
It sounds good, and your future employer probably enjoys reading such
buzzwords, even if it doesn’t make you a good programmer. What a good
programmer would never live with, however, is having a program contain the
same expression three times:

(- HEIGHT (/ (image-height ROCKET) 2))

Every time your friends and colleagues read this program, they need to
understand what this expression computes, namely, the distance between the top
of the canvas and the center point of a rocket resting on the ground. Every time
DrRacket computes the value of the expressions, it has to perform three steps:
(1) determine the height of the image; (2) divide it by 2; and (3) subtract the
result from HEIGHT. And, every time, it comes up with the same number.

This observation calls for the introduction of one more definition:

(define ROCKET-CENTER-TO-TOP
(- HEIGHT (/ (image-height ROCKET) 2)))

Now substitute ROCKET-CENTER-TO-TOP for the expression (- HEIGHT (/
(image-height ROCKET) 2)) in the rest of the program. You may be wondering
whether this definition should be placed above or below the definition for

HEIGHT. More generally, you should be wondering whether the ordering of
definitions matters. The answer is that for constant definitions, the order matters;
and for function definitions, it doesn’t. As soon as DrRacket encounters a
constant definition, it determines the value of the expression and then associates
the name with this value. For example,

(define HEIGHT (* 2 CENTER))
(define CENTER 100)

causes DrRacket to complain that “CENTER is used before its definition,” when it
encounters the definition for HEIGHT. In contrast,

(define CENTER 100)
(define HEIGHT (* 2 CENTER))

works as expected. First, DrRacket associates CENTER with 100. Second, it
evaluates (* 2 CENTER), which yields 200. Finally, DrRacket associates 200
with HEIGHT.

While the order of constant definitions matters, it does not matter where you
place constant definitions relative to function definitions. Indeed, if your
program consists of many function definitions, their order doesn’t matter either,
though it is good to introduce all constant definitions first, followed by the
definitions of functions in decreasing order of importance. When you start
writing your own multi-definition programs, you will see why this ordering
matters.

The program also contains two line comments, introduced with semicolons (“;”). While DrRacket
ignores such comments, people who read programs should not because comments are intended for
human readers. It is a “back channel” of communication between the author of the program and all
of its future readers to convey information about the program.

Once you eliminate all repeated expressions, you get the program in figure 8.
It consists of one function definition and five constant definitions. Beyond the
placement of the rocket’s center, these constant definitions also factor out the
image itself as well as the creation of the empty scene.

; constants

(define WIDTH 100)

(define HEIGHT 60)

(define MTSCN (empty—-scene WIDTH HEIGHT))

(define ROCKET)
(define ROCKET-CENTER-TO-TOP
(- HEIGHT (/ (image-height ROCKET) 2)))

; functions
(define (picture-of-rocket.v5 h)
(cond
[(<= h ROCKET-CENTER-TO-TOP)
(place—-image ROCKET 50 h MTSCN)]
[(> h ROCKET-CENTER-TO-TOP)
(place-image ROCKET 50 ROCKET-CENTER-TO-TOP MTSCN)]))

Figure 8: Landing a rocket (version 5)

Before you read on, ponder the following changes to your program:

How would you change the program to create a 200-by-400 scene?

How would you change the program so that it depicts the landing of a
green UFO (unidentified flying object)? Drawing the UFO is easy:

(overlay (circle 10 "solid" "green")
(rectangle 40 4 "solid" "green"))

How would you change the program so that the background is always
blue?

How would you change the program so that the rocket lands on a flat rock
bed that is 10 pixels higher than the bottom of the scene? Don’t forget to
change the scenery, too.

Better than pondering is doing. It’s the only way to learn. So don’t let us stop
you. Just do it.

Magic Numbers Take another look at picture-of-rocket.v5. Because we
eliminated all repeated expressions, all but one number disappeared from this
function definition. In the world of programming, these numbers are called
magic numbers, and nobody likes them. Before you know it, you forget what

role the number plays and what changes are legitimate. It is best to name such
numbers in a definition.

Here we actually know that 50 is our choice for an x-coordinate for the
rocket. Even though 50 doesn’t look like much of an expression, it really is a
repeated expression, too. Thus, we have two reasons to eliminate 50 from the
function definition, and we leave it to you to do so.

One More Definition

Recall that animate actually applies its functions to the number of clock ticks
that have passed since it was first called. That is, the argument to picture-of-
rocket isn’t a height but a time. Our previous definitions of picture-of-rocket
use the wrong name for the argument of the function; instead of h—short for
height—it ought to use t for time:

(define (picture-of-rocket t)
(cond
[(<= t ROCKET-CENTER-TO-TOP)
(place—image ROCKET 50 t MTSCN)]
[(> £t ROCKET-CENTER-TO-TOP)
(place—image ROCKET
50 ROCKET-CENTER-TO-TOP
MTSCN) 1))

And this small change to the definition immediately clarifies that this program
uses time as if it were a distance. What a bad idea.

Danger ahead! This section introduces one piece of knowledge from physics. If physics scares you,
skip it on a first reading; programming doesn’t require physics knowledge.

Even if you have never taken a physics course, you know that a time is not a
distance. So somehow our program worked by accident. Don’t worry, though; it
is all easy to fix. All you need to know is a bit of rocket science, which people
like us call physics.

Physics?!? Well, perhaps you have already forgotten what you learned in that
course. Or perhaps you have never taken a course on physics because you are

way too young or gentle. No worries. This happens to the best programmers all
the time because they need to help people with problems in music, economics,
photography, nursing, and all kinds of other disciplines. Obviously, not even
programmers know everything. So they look up what they need to know. Or they
talk to the right kind of people. And if you talk to a physicist, you will find out
that the distance traveled is proportional to the time:

d=v-t

That is, if the velocity of an object is v, then the object travels d miles (or meters
or pixels or whatever) in t seconds.
Of course, a teacher ought to show you a proper function definition:

dt) =v-t

because this tells everyone immediately that the computation of d depends on t
and that v is a constant. A programmer goes even further and uses meaningful
names for these one-letter abbreviations:

(define V 3)

(define (distance t)
(* vt))

This program fragment consists of two definitions: a function distance that
computes the distance traveled by an object traveling at a constant velocity, and
a constant V that describes the velocity.

You might wonder why V is 3 here. There is no special reason. We consider
3 pixels per clock tick a good velocity. You may not. Play with this number and
see what happens with the animation.

Now we can fix picture-of-rocket again. Instead of comparing t with a
height, the function can use (distance t) to calculate how far down the rocket
is. The final program is displayed in figure 9. It consists of two function
definitions: picture-of-rocket.v6 and distance. The remaining constant
definitions make the function definitions readable and modifiable. As always,
you can run this program with animate:

> (animate picture-of-rocket.v6)

; properties of the "world" and the descending rocket
(define WIDTH 100)

(define HEIGHT 60)

(define V 3)

(define X 50)

; graphical constants
(define MTSCN (empty—-scene WIDTH HEIGHT))

(define ROCKET @)

(define ROCKET-CENTER-TO-TOP
(- HEIGHT (/ (image-height ROCKET) 2)))

; functions
(define (picture-of-rocket.v6 t)
(cond
[(<= (distance t) ROCKET-CENTER-TO-TOP)
(place-image ROCKET X (distance t) MTSCN)]
[(> (distance t) ROCKET-CENTER-TO-TOP)
(place-image ROCKET X ROCKET-CENTER-TO-TOP MTSCN)]))

(define (distance t)
(+ V t))

Figure 9: Landing a rocket (version 6)

In comparison to the previous versions of picture-of-rocket, this one
shows that a program may consist of several function definitions that refer to
each other. Then again, even the first version used + and /—it’s just that you
think of those as built into BSL.

As you become a true-blue programmer, you will find out that programs
consist of many function definitions and many constant definitions. You will
also see that functions refer to each other all the time. What you really need to
practice is to organize them so that you can read them easily, even months after
completion. After all, an older version of you—or someone else—will want to
make changes to these programs; and if you cannot understand the program’s
organization, you will have a difficult time with even the smallest task.
Otherwise, you mostly know what there is to know.

You Are a Programmer Now

The claim that you are a programmer may have come as a surprise to you at the

end of the preceding section, but it is true. You know all the mechanics that there
are to know about BSL. You know that programming uses the arithmetic of
numbers, strings, images, and whatever other data your chosen programming
languages support. You know that programs consist of function and constant
definitions. You know, because we have told you, that in the end, it’s all about
organizing these definitions properly. Last but not least, you know that DrRacket
and the teachpacks support lots of other functions and that DrRacket’s HelpDesk
explains what these functions do.

You might think that you still don’t know enough to write programs that
react to keystrokes, mouse clicks, and so on. As it turns out, you do. In addition
to the animate function, the 2htdp/universe library provides other functions that
hook up your programs to the keyboard, the mouse, the clock, and other moving
parts in your computer. Indeed, it even supports writing programs that connect
your computer with anybody else’s computer around the world. So this isn’t
really a problem.

In short, you have seen almost all the mechanics of putting together
programs. If you read up on all the functions that are available, you can write
programs that play interesting computer games, run simulations, or keep track of
business accounts. The question is whether this really means you are a
programmer. Are you?

Stop! Don’t turn the page yet. Think!

Not!

When you look at the “programming” bookshelves in a random bookstore, you
will see loads of books that promise to turn you into a programmer on the spot.
Now that you have worked your way through some first examples, however, you
probably realize that this cannot possibly happen.

Acquiring the mechanical skills of programming—Ilearning to write
expressions that the computer understands, getting to know which functions and
libraries are available, and similar activities—isn’t helping you all that much
with real programming. If it were, you could equally well learn a foreign
language by memorizing a thousand words from the dictionary and a few rules
from a grammar book.

Good programming is far more than the mechanics of acquiring a language.
Most importantly, it is about keeping in mind that programmers create programs
for other people to read them in the future. A good program reflects the problem
statements and its important concepts. It comes with a concise self-description.
Examples illustrate this description and relate it back to the problem. The
examples make sure that the future reader knows why and how your code works.
In short, good programming is about solving problems systematically and
conveying the system within the code. Best of all, this approach to programming
actually makes programming accessible to everyone—so it serves two masters at
once.

The rest of this book is all about these things; very little of the book’s
content is actually about the mechanics of DrRacket, BSL, or libraries. The book
shows you how good programmers think about problems. And, you will even
learn that this way of solving problems applies to other situations in life, such as
the work of doctors, journalists, lawyers, and engineers.

Oh, and by the way, the rest of the book uses a tone that is more appropriate
for a serious text than this Prologue. Enjoy!

Note on What This Book Is Not About Introductory books on
programming tend to contain lots of material about the authors’ favorite
application discipline: puzzles, mathematics, physics, music, and so on. Such
material is natural because programming is obviously useful in all these areas,
but it also distracts from the essential elements of programming. Hence, we have
made every attempt to minimize the use of knowledge from other areas so that

we can focus on what computer science can teach you about computational
problem solving.

Nefs fron weeting of Ol

- DEGIGN A SINGLE FAMILY RESIPENCE IN Historlc
PRECERVATION NElGHBORHOOP

CPROGEAM: BEBED: 2 BAH - LIVING: DINING: it Wopkpoo-
PUAYROOM - Vt1L - DECK/Popett ~2000 SF © 480 PERSF

© PEUAL WishES:
* MOENING UletHT IN EITCHEN AND BEDROOMS
© GTAIR AG Focsl BLEMENT IN ENTRY AREA
= T GTRONE CONNEGTION OF PUBUC SPACES T OVISIDE-
- PORE WiTH SUN AL DAY AND Popcht oWING

- TUBBLE, DIAGRAM OF FUNGHNAL RELATIONSHIPS

bedromime

Yy @200 el Erfur

FIXED'SIZE DATA

Every programming language comes with a language of data and a language of
operations on data. The first language always provides some forms of atomic
data; to represent the variety of information in the real world as data, a
programmer must learn to compose basic data and to describe such
compositions. Similarly, the second language provides some basic operations on
atomic data; it is the programmer’s task to compose these operations into
programs that perform the desired computations. We use arithmetic for the
combination of these two parts of a programming language because it
generalizes what you know from grade school.

This first part of the book (I) introduces the arithmetic of BSL, the
programming language used in the Prologue. From arithmetic, it is a short step
to your first simple programs, which you may know as functions from
mathematics. Before you know it, though, the process of writing programs looks
confusing, and you will long for a way to organize your thoughts. We equate
“organizing thoughts” with design, and this first part of the book introduces you
to a systematic way of designing programs.

1 Arithmetic

From the Prologue, you know how to write down the kind of expression you
know from first grade in BSL notation:

* write “(”,
 write down the name of a primitive operation op,
 write down the arguments, separated by some space, and
 write down “)”.
Just as a reminder, here is a primitive expression:
(+ 1 2)

It uses +, the operation for adding two numbers, followed by two arguments,
which are plain numbers. But here is another example:

(+1 (+1 (+11)2) 3 45)

This second example exploits two points in the above description that are open
to interpretation. First, primitive operations may consume more than two
arguments. Second, the arguments don’t have to be numbers per se; they can be
expressions, too.

Scan this first chapter quickly, skip ahead to the second one, and return here, when you encounter
“arithmetic” that you don’t recognize.

Evaluating expressions is also straightforward. First, BSL evaluates all the
arguments of a primitive operation. Second, it “feeds” the resulting pieces of
data to the operation, which produces a result. Thus,

and

(+1 (+1 (+11)2)3 (+22)5)

(+1 (+122)345)

(+15 3 4 5)

18

These calculations should look familiar because they are the same kind of
calculations that you performed in mathematics classes. You may have written
down the steps in a different way; you may have never been taught how to write
down a sequence of calculation steps. Yet, BSL performs calculations just like
you do, and this should be a relief. It guarantees that you understand what it does
with primitive operations and primitive data, so there is some hope that you can
predict what your programs will compute. Generally speaking, it is critical for a
programmer to know how the chosen language calculates because otherwise a
program’s computation may harm the people who use them or on whose behalf
the programs calculate.

We use == to mean “is equal to according to the laws of computation.”

The rest of this chapter introduces four forms of atomic data of BSL:
numbers, strings, images, and Boolean values. We use the word “atomic” here in
analogy to physics. You cannot peek inside atomic pieces of data, but you do
have functions that combine several pieces of atomic data into another one,
retrieve “properties” of them, also in terms of atomic data, and so on. The
sections of this chapter introduce some of these functions, also called primitive
operations or pre-defined operations. You can find others in the documentation
of BSL that comes with DrRacket.

The next volume, How to Design Components, will explain how to design atomic data.

1.1 The Arithmetic of Numbers

Most people think “numbers” and “operations on numbers” when they hear
“arithmetic.” “Operations on numbers” means adding two numbers to yield a
third, subtracting one number from another, determining the greatest common
divisor of two numbers, and many more such things. If we don’t take arithmetic
too literally, we may even include the sine of an angle, rounding a real number
to the closest integer, and so on.

The BSL language supports Numbers and arithmetic on them. As discussed
in the Prologue, an arithmetic operation such as + is used like this:

(+ 3 4)

that is, in prefix notation form. Here are some of the operations on numbers that
our language provides: +, -, *, /, abs, add1, ceiling, denominator, exact-
>inexact, expt, floor, gcd, log, max, numerator, quotient, random,
remainder, sqr, and tan. We picked our way through the alphabet just to show
the variety of operations. Explore what they compute, and then find out how
many more there are.

If you need an operation on numbers that you know from your mathematics
courses, chances are that BSL knows about it, too. Guess its name and
experiment in the interactions area. Say you need to compute the sin of some
angle; try

> (sin 0)
0]

and use it happily ever after. Or look in the HelpDesk. You will find there that in
addition to operations BSL also recognizes the names of some widely used
numbers, for example, pi and e.

You might know e from calculus. It’s a real number, close to 2.718, called “Euler’s constant.”

When it comes to numbers, BSL programs may use natural numbers,
integers, rational numbers, real numbers, and complex numbers. We assume that

you have heard of all but the last one. The last one may have been mentioned in
your high school class. If not, don’t worry; while complex numbers are useful
for all kinds of calculations, a novice doesn’t have to know about them.

A truly important distinction concerns the precision of numbers. For now, it
is important to understand that BSL distinguishes exact numbers and inexact
numbers. When it calculates with exact numbers, BSL preserves this precision
whenever possible. For example, (/ 4 6) produces the precise fraction 2/3,
which DrRacket can render as a proper fraction, an improper fraction, or a mixed
decimal. Play with your computer’s mouse to find the menu that changes the
fraction into decimal expansion.

Some of BSL’s numeric operations cannot produce an exact result. For
example, using the sqrt operation on 2 produces an irrational number that
cannot be described with a finite number of digits. Because computers are of
finite size and BSL must somehow fit such numbers into the computer, it
chooses an approximation: 1.4142135623730951. As mentioned in the Prologue,
the #i prefix warns novice programmers of this lack of precision. While most
programming languages choose to reduce precision in this manner, few advertise
it and even fewer warn programmers.

Note on Numbers The word “Number” refers to a wide variety of numbers,
including counting numbers, integers, rational numbers, real numbers, and even
complex numbers. For most uses, you can safely equate Number with the
number line from elementary school, though on occasion this translation is too
imprecise. If we wish to be precise, we use appropriate words: Integer, Rational,
and so on. We may even refine these notions using such standard terms as
Positivelnteger, NonnegativeNumber, NegativeNumber, and so on. End

Exercise 1. Add the following definitions for x and y to DrRacket’s
definitions area:

(define x 3)
(define y 4)

Now imagine that x and y are the coordinates of a Cartesian point. Write down
an expression that computes the distance of this point to the origin, that is, a
point with the coordinates (0,0).

The expected result for these values is 5, but your expression should produce
the correct result even after you change these definitions.

Just in case you have not taken geometry courses or in case you forgot the
formula that you encountered there, the point (x,y) has the distance

from the origin. After all, we are teaching you how to design programs, not how
to be a geometer.

To develop the desired expression, it is best to click RUN and to experiment
in the interactions area. The RUN action tells DrRacket what the current values
of x and y are so that you can experiment with expressions that involve x and y:

vV b V W V
<

(+ x 10)
13

> (" xy)
12

Once you have the expression that produces the correct result, copy it from the
interactions area to the definitions area.

To confirm that the expression works properly, change x to 12 and y to 5,
then click RUN. The result should be 13.

Your mathematics teacher would say that you computed the distance
formula. To use the formula on alternative inputs, you need to open DrRacket,
edit the definitions of x and y so they represent the desired coordinates, and click
RUN. But this way of reusing the distance formula is cumbersome and naive.
We will soon show you a way to define functions, which makes reusing
formulas straightforward. For now, we use this kind of exercise to call attention
to the idea of functions and to prepare you for programming with them.

1.2 The Arithmetic of Strings

A widespread prejudice about computers concerns their innards. Many believe
that it is all about bits and bytes—whatever those are—and possibly numbers
because everyone knows that computers can calculate. While it is true that
electrical engineers must understand and study the computer as just such an
object, beginning programmers and everyone else need never (ever) succumb to
this thinking.

Programming languages are about computing with information, and
information comes in all shapes and forms. For example, a program may deal
with colors, names, business letters, or conversations between people. Even
though we could encode this kind of information as numbers, it would be a
horrible idea. Just imagine remembering large tables of codes, such as ® means
“red” and 1 means “hello,” and the like.

Instead, most programming languages provide at least one kind of data that
deals with such symbolic information. For now, we use BSL’s strings. Generally
speaking, a String is a sequence of the characters that you can enter on the
keyboard, plus a few others, about which we aren’t concerned just yet, enclosed
in double quotes. In the Prologue, we have seen a number of BSL strings:
"hello", "world", "blue", "red", and others. The first two are words that may
show up in a conversation or in a letter; the others are names of colors that we
may wish to use.

Note We use 1String to refer to the keyboard characters that make up a
String. For example, "red" consists of three such 1Strings: "r", "e", "d". As it
turns out, there is a bit more to the definition of 1String, but for now thinking of
them as Strings of length 1 is fine. End

BSL includes only one operation that exclusively consumes and produces
strings: string-append, which, as we have seen in the Prologue, concatenates
two given strings into one. Think of string-append as an operation that is just
like +. While the latter consumes two (or more) numbers and produces a new
number, the former consumes two or more strings and produces a new string:

> (string-append "what a " "lovely " "day" " 4 BSL")
"what a lovely day 4 BSL"

Nothing about the given numbers changes when + adds them up, and nothing

about the given strings changes when string-append concatenates them into
one big string. If you wish to evaluate such expressions, you just need to think
that the obvious laws hold for string-append, similar to those for +:

(+ 1 1) == 2 (string—append "a" "b") == "ab"
(+ 1 2) == 3 (string—append "ab" "c") == "abc"
(+ 2 2) == 14 (string—append "a" " ") == "g "

Exercise 2. Add the following two lines to the definitions area:

(define prefix "hello")
(define suffix "world")

Then use string primitives to create an expression that concatenates prefix and
suffix and adds "_" between them. When you run this program, you will see
"hello_world" in the interactions area.

See exercise 1 for how to create expressions using DrRacket. 1

1.3 Mixing It Up

All other operations (in BSL) concerning strings consume or produce data other
than strings. Here are some examples:

* string-length consumes a string and produces a number;

* string-ith consumes a string s together with a number i and extracts the
1String located at the ith position (counting from 0); and

* number->string consumes a number and produces a string.

Also look up substring and find out what it does.

If the documentation in HelpDesk appears confusing, experiment with the
functions in the interactions area. Give them appropriate arguments, and find out
what they compute. Also use inappropriate arguments for some operations just
to find out how BSL reacts:

> (string-length 42)
string-length:expects a string, given 42

As you can see, BSL reports an error. The first part “string-length” informs you
about the operation that is misapplied; the second half states what is wrong with
the arguments. In this specific example, string-length is supposed to be
applied to a string but is given a number, specifically 42.

Naturally, it is possible to nest operations that consume and produce different
kinds of data as long as you keep track of what is proper and what is not.
Consider this expression from the the Prologue:

(+ (string-length "hello world") 20)

The inner expression applies string-length to "hello world", our favorite
string. The outer expression has + consume the result of the inner expression and
20.

Let’s determine the result of this expression in a step-by-step fashion:

(+ (string-length "hello world") 20)

(+ 11 20)

Not surprisingly, computing with such nested expressions that deal with a mix of
data is no different from computing with numeric expressions. Here is another
example:

(+ (string-length (number->string 42)) 2)
(+ (string-length "42") 2)

(+ 2 2)

Before you go on, construct some nested expressions that mix data in the wrong
way, say,

(+ (string-length 42) 1)

Run them in DrRacket. Study the red error message but also watch what
DrRacket highlights in the definitions area.
Exercise 3. Add the following two lines to the definitions area:

(define str "helloworld")
(define i 5)

Then create an expression using string primitives that adds "_" at position i. In
general this means the resulting string is longer than the original one; here the
expected result is "hello_world".

Position means i characters from the left of the string, but programmers start
counting at 0. Thus, the 5th letter in this example is "w", because the oth letter is
"h". Hint When you encounter such “counting problems” you may wish to add a
string of digits below str to help with counting:

(define str "helloworld")

(define ind "0123456789")
(define i 5)

See exercise 1 for how to create expressions in DrRacket. 1

Exercise 4. Use the same setup as in exercise 3 to create an expression that
deletes the ith position from str. Clearly this expression creates a shorter string
than the given one. Which values for i are legitimate?

1.4 The Arithmetic of Images

An Image is a visual, rectangular piece of data, for example, a photo or a
geometric figure and its frame. You can insert images in DrRacket wherever you
can write down an expression because images are values, just like numbers and
strings.

Remember to require the 2htdp/image library in a new tab.

Your programs can also manipulate images with primitive operations. These
primitive operations come in three flavors. The first kind concerns the creation
of basic images:

* circle produces a circle image from a radius, a mode string, and a color
string;

* ellipse produces an ellipse from two radii, a mode string, and a color
string;

* line produces a line from two points and a color string;

* rectangle produces a rectangle from a width, a height, a mode string, and
a color string;

* text produces a text image from a string, a font size, and a color string;
and

* triangle produces an upward-pointing equilateral triangle from a size, a
mode string, and a color string.

The names of these operations mostly explain what kind of image they create.
All you must know is that mode strings means "solid" or "outline", and color
strings are strings such as "orange", "black", and so on.

Play with these operations in the interactions window:

> (circle 10 "solid" "green")

> (rectangle 10 20 "solid" "blue")

> (star 12 "solid" "gray")

Stop! The above uses a previously unmentioned operation. Look up its
documentation and find out how many more such operations the 2htdp/image
library comes with. Experiment with the operations you find.

The second kind of functions on images concern image properties:

* image-width determines the width of an image in terms of pixels;
* image-height determines the height of an image;

They extract the kind of values from images that you expect:

> (image-width (circle 10 "solid" "red"))
20

> (image-height (rectangle 10 20 "solid" "blue"))
20

Stop! Explain how DrRacket determines the value of this expression:

(+ (image-width (circle 10 "solid" "red"))
(image-height (rectangle 10 20 "solid" "blue")))

A proper understanding of the third kind of image-composing primitives
requires the introduction of one new idea: the anchor point. An image isn’t just a
single pixel, it consists of many pixels. Specifically, each image is like a
photograph, that is, a rectangle of pixels. One of these pixels is an implicit
anchor point. When you use an image primitive to compose two images, the
composition happens with respect to the anchor points, unless you specify some
other point explicitly:

» overlay places all the images to which it is applied on top of each other,
using the center as anchor point;

* overlay/xy is like overlay but accepts two numbers—x and y—between
two image arguments. It shifts the second image by x pixels to the right
and y pixels down—all with respect to the first image’s top-left corner;
unsurprisingly, a negative x shifts the image to the left and a negative y up;
and

* overlay/align is like overlay but accepts two strings that shift the anchor
point(s) to other parts of the rectangles. There are nine different positions
overall; experiment with all possibilities!

The 2htdp/image library comes with many other primitive functions for
combining images. As you get familiar with image processing, you will want to
read up on those. For now, we introduce three more because they are important
for creating animated scenes and images for games:

* empty-scene creates a rectangle of some given width and height;

* place-image places an image into a scene at a specified position. If the
image doesn’t fit into the given scene, it is appropriately cropped;

* scene+line consumes a scene, four numbers, and a color to draw a line
into the given image. Experiment with it to see how it works.

The laws of arithmetic for images are analogous to those for numbers; see
figure 10 for some examples and a comparison with numeric arithmetic. Again,
no image gets destroyed or changed. Like +, these primitives just make up new
images that combine the given ones in some manner.

arithmetic of numbers

arithmetic of images

(+ 1 1) ==
(+ 1 2) ==3
(+ 2 2) == 4

(overlay (square 4 "solid" "orange")
(circle 6 "solid" "yellow"))

(underlay (circle 6 "solid" "yellow")
(square 4 "solid" "orange"))

(place—-image (circle 6 "solid" "yellow")
10 10
(empty—-scene 20 20))

[]

Figure 10: Laws of image creation

Exercise 5. Use the 2htdp/image library to create the image of a simple boat
or tree. Make sure you can easily change the scale of the entire image.

Copy and paste the image into your DrRacket.

Exercise 6. Add the following line to the definitions area:

(define cat

Create an expression that counts the number of pixels in the image. 1

1.5 The Arithmetic of Booleans

We need one last kind of primitive data before we can design programs: Boolean
values. There are only two kinds of Boolean values: #true and #false.
Programs use Boolean values for representing decisions or the status of switches.

Computing with Boolean values is simple, too. In particular, BSL. programs
get away with three operations: or, and, and not. These operations are kind of
like addition, multiplication, and negation for numbers. Of course, because there
are only two Boolean values, it is actually possible to demonstrate how these
functions work in all possible situations:

* or checks whether any of the given Boolean values is #true:

> (or #true #true)
#true

> (or #true #false)
#true

> (or #false #true)
#true

> (or #false #false)
#false

* and checks whether all of the given Boolean values are #true:

> (and #true #true)
#true

> (and #true #false)
#false

> (and #false #true)
#false

> (and #false #false)
#false

+ and not always picks the Boolean that isn’t given:

> (not #true)
#false

Unsurprisingly, or and and may be used with more than two expressions.
Finally, there is more to or and and than these explanations suggest, but to

explain the extra bit requires a second look at nested expressions.

Exercise 7. Boolean expressions can express some everyday problems.
Suppose you want to decide whether today is an appropriate day to go to the
mall. You go to the mall either if it is not sunny or if today is Friday (because
that is when stores post new sales items).

Nadeem Hamid suggested this formulation of the exercise.

Here is how you could go about it using your new knowledge about
Booleans. First add these two lines to the definitions area of DrRacket:

(define sunny #true)
(define friday #false)

Now create an expression that computes whether sunny is false or friday is true.
So in this particular case, the answer is #false. (Why?)

See exercise 1 for how to create expressions in DrRacket. How many
combinations of Booleans can you associate with sunny and friday? i

1.6 Mixing It Up with Booleans

One important use of Boolean values concerns calculations with different kinds
of data. We know from the Prologue that BSL programs may name values via
definitions. For example, we could start a program with

(define x 2)

and then compute its inverse:

(define inverse-of-x (/ 1 X))

This works fine, as long as we don’t edit the program and change x to o.

This is where Boolean values come in, in particular conditional calculations.
First, the primitive function = determines whether two (or more) numbers are
equal. If so, it produces #true, otherwise #false. Second, there is a kind of BSL
expression that we haven’t mentioned so far: the if expression. It uses the word
“if” as if it were a primitive function; it isn’t. The word “if” is followed by three
expressions, separated by blank spaces (that includes tabs, line breaks, etc.).
Naturally the entire expression is enclosed in parentheses. Here is an example:

(if (= x 0) 0 (/ 1 x))

This if expression contains (= x 0), 0, and (/ 1 x), three so-called sub-
expressions. The evaluation of this expression proceeds in two steps:

1. The first expression is always evaluated. Its result must be a Boolean.

2. If the result of the first expression is #true, then the second expression is
evaluated; otherwise the third one is. Whatever their results are, they are
also the result of the entire if expression.

Right-click on the result and choose a different representation.

Given the definition of x above, you can experiment with if expressions in
the interactions area:

> (if (= x 0) 0 (/ 1 X))
0.5

Using the laws of arithmetic, you can figure out the result yourself:

(if (= x 0) 0 (/ 1 x))

== ; because x stands for 2

(if (=2 0) 0 (/1 2))

== ; 2 is not equal to 0, (= 2 0) is #false
(if #false 0 (/ 1 X))

(/1 2)

== ,; normalize this to its decimal representation
0.5

In other words, DrRacket knows that x stands for 2 and that the latter is not equal
to 0. Hence, (= x 0) produces the result #false, meaning if picks its third sub-
expression to be evaluated.

Stop! Imagine you edit the definition so that it looks like this:

(define x 0)

What do you think

(if (= x 0) 0 (/ 1 x))

evaluates to in this context? Why? Show your calculation.

In addition to =, BSL provides a host of other comparison primitives. Explain
what the following four comparison primitives determine about numbers: <, <=,
> >=,

Strings aren’t compared with = and its relatives. Instead, you must use
string=? or string<=? or string>=? if you ever need to compare strings. While
it is obvious that string=? checks whether the two given strings are equal, the
other two primitives are open to interpretation. Look up their documentation. Or,
experiment, guess a general law, and then check in the documentation whether
you guessed right.

You may wonder why it is ever necessary to compare strings with each
other. So imagine a program that deals with traffic lights. It may use the strings

"green", "yellow", and "red". This kind of program may contain a fragment
such as this:

(define current-color ..)

(define next-color
(if (string=? '"green" current-color) "yellow" ..))

It should be easy to imagine that this fragment deals with the computation that
determines which light bulb is to be turned on next and which one should be
turned off.

The dots in the definition of current-color aren’t a part of the program, of course. Replace them
with a string that refers to a color.

The next few chapters introduce better expressions than if to express
conditional computations and, most importantly, systematic ways for designing
them.

Exercise 8. Add the following line to the definitions area:

(define cat

Create a conditional expression that computes whether the image is tall or wide.
An image should be labeled "tall" if its height is larger than or equal to its
width; otherwise it is "wide". See exercise 1 for how to create such expressions
in DrRacket; as you experiment, replace the cat with a rectangle of your choice
to ensure that you know the expected answer.

Now try the following modification. Create an expression that computes

whether a picture is "tall", "wide", or "square".1

1.7 Predicates: Know Thy Data

Remember the expression (string-length 42) and its result. Actually, the
expression doesn’t have a result, it signals an error. DrRacket lets you know
about errors via red text in the interactions area and highlighting of the faulty
expression (in the definitions area). This way of marking errors is particularly
helpful when you use this expression (or its relatives) deeply nested within some
other expression:

(* (+ (string-length 42) 1) pi)

Experiment with this expression by entering it both into DrRacket’s interactions
area and in the definitions area (and then click on RUN).

Of course, you really don’t want such error-signaling expressions in your
program. And usually, you don’t make such obvious mistakes as using 42 as a
string. It is quite common, however, that programs deal with variables that may
stand for either a number or a string:

(define in ..)
(string-length in)

A variable such as in can be a placeholder for any value, including a number,
and this value then shows up in the string-length expression.

One way to prevent such accidents is to use a predicate, which is a function
that consumes a value and determines whether or not it belongs to some class of
data. For example, the predicate number? determines whether the given value is
a number or not:

> (number? 4)

#true

> (number? pi)

#true

> (number? #true)
#false

> (number? "fortytwo")

#false

As you see, the predicates produce Boolean values. Hence, when predicates are
combined with conditional expressions, programs can protect expressions from
misuse:

(define in ..)
(if (string? in) (string-length in) ..)

Every class of data that we introduced in this chapter comes with a predicate.
Experiment with number?, string?, image?, and boolean? to ensure that you
understand how they work.

Put (sqrt -1) at the prompt in the interactions area and hit the “enter” key. Take a close look at the
result. The result you see is the first so-called complex number anyone encounters. While your
teacher may have told you that one doesn’t compute the square root of negative numbers, the truth is
that mathematicians and some programmers find it acceptable and useful to do so anyway. But don’t
worry: understanding complex numbers is not essential to being a program designer.

In addition to predicates that distinguish different forms of data,
programming languages also come with predicates that distinguish different
kinds of numbers. In BSL, numbers are classified in two ways: by construction
and by their exactness. Construction refers to the familiar sets of numbers:
integer?, rational?, real?, and complex?, but many programming languages,
including BSL, also choose to use finite approximations to well-known
constants, which leads to somewhat surprising results with the rational?
predicate:

> (rational? pi)
#true

As for exactness, we have mentioned the idea before. For now, experiment with

exact? and inexact? to make sure they perform the checks that their names

suggest. Later we are going to discuss the nature of numbers in some detail.
Exercise 9. Add the following line to the definitions area of DrRacket:

(define in ..)

Then create an expression that converts the value of in to a positive number. For
a String, it determines how long the String is; for an Image, it uses the area; for a
Number, it decrements the number by 1, unless it is already © or negative; for
#true it uses 10 and for #false 20.

See exercise 1 for how to create expressions in DrRacket. 1

Exercise 10. Now relax, eat, sleep, and then tackle the next chapter. 1

2 Functions and Programs

As far as programming is concerned, “arithmetic” is half the game; the other half
is “algebra.” Of course, “algebra” relates to the school notion of algebra as
little/much as the notion of “arithmetic” from the preceding chapter relates to
arithmetic taught in grade-school arithmetic. Specifically, the algebra notions
needed are variable, function definition, function application, and function
composition. This chapter reacquaints you with these notions in a fun and
accessible manner.

2.1 Functions

Programs are functions. Like functions, programs consume inputs and produce
outputs. Unlike the functions you may know, programs work with a variety of
data: numbers, strings, images, mixtures of all these, and so on. Furthermore,
programs are triggered by events in the real world, and the outputs of programs
affect the real world. For example, a spreadsheet program may react to an
accountant’s key presses by filling some cells with numbers, or the calendar
program on a computer may launch a monthly payroll program on the last day of
every month. Lastly, a program may not consume all of its input data at once,
instead it may decide to process data in an incremental manner.

Definitions While many programming languages obscure the relationship
between programs and functions, BSL brings it to the fore. Every BSL program
consists of several definitions, usually followed by an expression that involves
those definitions. There are two kinds of definitions:

* constant definitions, of the shape (define Variable Expression), which
we encountered in the preceding chapter; and

* function definitions, which come in many flavors, one of which we used in
the Prologue.

Like expressions, function definitions in BSL come in a uniform shape:

(define (FunctionName Variable .. Variable)
Expression)

That is, to define a function, we write down
* “(define (7,
* the name of the function,
+ followed by several variables, separated by space and ending in “)”,

* and an expression followed by “) ™.

And that is all there is to it. Here are some small examples:
* (define (f x) 1)
* (define (g xvy) (+ 1 1))
* (define (h xy z) (+ (* 2 2) 3))

Before we explain why these examples are silly, we need to explain what
function definitions mean. Roughly speaking, a function definition introduces a
new operation on data; put differently, it adds an operation to our vocabulary if
we think of the primitive operations as the ones that are always available. Like a
primitive function, a defined function consumes inputs. The number of variables
determines how many inputs—also called arguments or parameters—a function
consumes. Thus, f is a one-argument function, sometimes called a unary
function. In contrast, g is a two-argument function, also dubbed binary, and h is
a ternary or three-argument function. The expression—often referred to as the
function body—determines the output.

The examples are silly because the expressions inside the functions do not
involve the variables. Since variables are about inputs, not mentioning them in
the expressions means that the function’s output is independent of its input and
therefore always the same. We don’t need to write functions or programs if the
output is always the same.

Variables aren’t data; they represent data. For example, a constant definition
such as

(define x 3)

says that x always stands for 3. The variables in a function header, that is, the
variables that follow the function name, are placeholders for unknown pieces of
data, the inputs of the function. Mentioning a variable in the function body is the
way to use these pieces of data when the function is applied and the values of the
variables become known.

Consider the following fragment of a definition:

(define (ff a) ..)

Its function header is (ff a), meaning ff consumes one piece of input, and the
variable a is a placeholder for this input. Of course, at the time we define a
function, we don’t know what its input(s) will be. Indeed, the whole point of
defining a function is that we can use the function many times on many different
inputs.

Useful function bodies refer to the function parameters. A reference to a
function parameter is really a reference to the piece of data that is the input to the
function. If we complete the definition of ff like this

(define (ff a)
(* 10 a))

we are saying that the output of a function is ten times its input. Presumably this
function is going to be supplied with numbers as inputs because it makes no
sense to multiply images or Boolean values or strings by 10.

For now, the only remaining question is how a function obtains its inputs.
And to this end, we turn to the notion of applying a function.

Applications A function application puts defined functions to work, and it
looks just like the applications of a pre-defined operation:

* write “(”,
» write down the name of a defined function f,
 write down as many arguments as f consumes, separated by space,

* and add “)” at the end.

With this bit of explanation, you can now experiment with functions in the
interactions area just as we suggested you experiment with primitives to find out
what they compute. The following three experiments, for example, confirm that
f from above produces the same value no matter what input it is applied to:

> (f 1)

1

> (f "hello world")
1

> (f #true)
1

What does (f (circle 3 "solid" "red")) yield?

Remember to add (require 2htdp/image) to the definitions area.

See, even images as inputs don’t change f’s behavior. But here is what
happens when the function is applied to too few or too many arguments:

> ()
f:expects 1 argument, found none

> (f 123 45)
f:expects only 1 argument, found 5

DrRacket signals an error that is just like those you see when you apply a
primitive to the wrong number of arguments:

> (+)

+:expects at least 2 arguments, found none

Functions don’t have to be applied at the prompt in the interactions area. It is
perfectly acceptable to use function applications nested within other function
applications:

> (+ (ff 3) 2)

32
> (* (ff 4) (+ (ff 3) 2))
1280

> (ff (ff 1))

100

Exercise 11. Define a function that consumes two numbers, x and y, and that
computes the distance of point (x,y) to the origin.

In exercise 1 you developed the right-hand side of this function for concrete
values of x and y. Now add a header.

Exercise 12. Define the function cvolume, which accepts the length of a side

of an equilateral cube and computes its volume. If you have time, consider
defining csurface, too.

Hint An equilateral cube is a three-dimensional container bounded by six
squares. You can determine the surface of a cube if you know that the square’s
area is its length multiplied by itself. Its volume is the length multiplied with the
area of one of its squares. (Why?)1

Exercise 13. Define the function string-first, which extracts the first
1String from a non-empty string. 1

Exercise 14. Define the function string-last, which extracts the last
1String from a non-empty string.

Exercise 15. Define ==>. The function consumes two Boolean values, call
them sunny and friday. Its answer is #true if sunny is false or friday is true.
Note Logicians call this Boolean operation implication, and they use the notation
sunny = > friday for this purpose. 1

Exercise 16. Define the function image-area, which counts the number of
pixels in a given image. See exercise 6 for ideas. 1

Exercise 17. Define the function image-classify, which consumes an
image and conditionally produces "tall" if the image is taller than wide, "wide"
if it is wider than tall, or "square" if its width and height are the same. See
exercise 8 for ideas. 1

Exercise 18. Define the function string-join, which consumes two strings
and appends them with "_" in between. See exercise 2 for ideas. 1

Exercise 19. Define the function string-insert, which consumes a string
str plus a number i and inserts "_" at the ith position of str. Assume i is a
number between 0 and the length of the given string (inclusive). See exercise 3
for ideas. Ponder how string-insert copes with "".1

Exercise 20. Define the function string-delete, which consumes a string
plus a number i and deletes the ith position from str. Assume i is a number
between 0 (inclusive) and the length of the given string (exclusive). See exercise
4 for ideas. Can string-delete deal with empty strings?

2.2 Computing

Function definitions and applications work in tandem. If you want to design
programs, you must understand this collaboration because you need to imagine
how DrRacket runs your programs and because you need to figure out what
goes wrong when things go wrong—and they will go wrong.

While you may have seen this idea in an algebra course, we prefer to explain
it our way. So here we go. Evaluating a function application proceeds in three
steps: DrRacket determines the values of the argument expressions; it checks
that the number of arguments and the number of function parameters are the
same; if so, DrRacket computes the value of the body of the function, with all
parameters replaced by the corresponding argument values. This last value is the
value of the function application. This is a mouthful, so we need examples.

Here is a sample calculation for f:

(f (+11))

== , DrRacket knows that (+ 1 1) ==

(f 2)

== , DrRacket replaced all occurrences of x with 2
1

That last equation is weird because x does not occur in the body of f. Therefore,
replacing the occurrences of x with 2 in the function body produces 1, which is
the function body itself.

For ff, DrRacket performs a different kind of computation:

(ff (+ 1 1))

== , DrRacket again knows that (+ 1 1) ==

(ff 2)

== ,; DrRacket replaces a with 2 in ff's body

(* 10 2)

== ,; and from here, DrRacket uses plain arithmetic

The best point is that when you combine these laws of computation with
those of arithmetic, you can pretty much predict the outcome of any program in

BSL:

(+ (Ff (+ 1 2)) 2)
== , DrRacket knows that (+ 1 2) ==

(+ (ff 3) 2)

== , DrRacket replaces a with 3 in ff's body
(+ (* 10 3) 2)

== , now DrRacket uses the laws of arithmetic
(+ 30 2)

Naturally, we can reuse the result of this computation in others:

(* (ff 4) (+ (ff 3) 2))
== ; DrRacket substitutes 4 for a in ff's body

(* (¥ 10 4) (+ (ff 3) 2))

== ,; DrRacket knows that (* 10 4) == 40

(* 40 (+ (ff 3) 2))

== ; now it uses the result of the above calculation
(* 40 32)

1280 ; because it is really just math

In sum, DrRacket is an incredibly fast algebra student; it knows all the laws
of arithmetic and it is great at substitution. Even better, DrRacket cannot only
determine the value of an expression; it can also show you how it does it. That
is, it can show you step-by-step how to solve these algebra problems that ask
you to determine the value of an expression.

Take a second look at the buttons that come with DrRacket. One of them
looks like an “advance to next track” button on an audio player. If you click this
button, the stepper window pops up and you can step through the evaluation of
the program in the definitions area.

Enter the definition of ff into the definitions area. Add (ff (+ 1 1)) at the
bottom. Now click the STEP. The stepper window will show up; figure 11 shows
what it looks like in version 6.2 of the software. At this point, you can use the

forward and backward arrows to see all the computation steps that DrRacket
uses to determine the value of an expression. Watch how the stepper performs
the same calculations as we do.

] Step || Step pﬂ Jump... | to beginning P14 {éi@

efine (ff a) (* 10 a))} w(deﬁ‘ne (Ff a) (= 10 a))

3 C i
§(‘FF {+ 1 1)} (Ff 2>

Figure 11: The DrRacket stepper

Stop! Yes, you could have used DrRacket to solve some of your algebra
homework. Experiment with the various options that the stepper offers.

Exercise 21. Use DrRacket’s stepper to evaluate (ff (ff 1)) step-by-step.
Also try (+ (ff 1)(ff 1)). Does DrRacket’s stepper reuse the results of
computations? 1

At this point, you might think that you are back in an algebra course with all
these computations involving uninteresting functions and numbers. Fortunately,
this approach generalizes to all programs, including the interesting ones, in this
book.

Let’s start by looking at functions that process strings. Recall some of the
laws of string arithmetic:

(string-append "hello" " " "world") == "hello world"
(string-append "bye" ", " "world") == "bye, world"
Now suppose we define a function that creates the opening of a letter:

(define (opening first-name last-name)
(string-append "Dear " first-name ","))

When you apply this function to two strings, you get a letter opening;:

> (opening "Matthew" "Fisler")
"Dear Matthew, "

More importantly, though, the laws of computing explain how DrRacket
determines this result and how you can anticipate what DrRacket does:

(opening "Matthew" "Fisler")
== ; DrRacket substitutes "Matthew" for first-name

(string-append "Dear " "Matthew" ",")

"Dear Matthew, "

Since last-name does not occur in the definition of opening, replacing it with

"Fisler" has no effect.
The rest of the book introduces more forms of data. To explain operations on

data, we always use laws like those of arithmetic in this book.

Eventually you will encounter imperative operations, which do not combine or extract values but
modify them. To calculate with such operations, you will need to add some laws to those of arithmetic

and substitution.

Exercise 22. Use DrRacket’s stepper on this program fragment:

(define (distance-to-origin x y)

(sart (+ (sqr x) (sqar y))))
(distance-to-origin 3 4)

Does the explanation match your intuition? 1
Exercise 23. The first 1String in "hello world" is "h". How does the

following function compute this result?

(define (string-first s)
(substring s 0 1))

Use the stepper to confirm your ideas. 1
Exercise 24. Here is the definition of ==>:y

(define (==> x vy)
(or (not x) y))

Use the stepper to determine the value of (==> #true #false).1
Exercise 25. Take a look at this attempt to solve exercise 17:

(define (image-classify 1img)
(cond
[(>= (image-height img) (image-width img)) "tall"]
[(= (image—-height img) (image—-width img)) "square"]
[(<= (image-height img) (image-width img)) "wide"]))

Does stepping through an application suggest a fix? 1
Exercise 26. What do you expect as the value of this program:

(define (string-insert s 1i)
(string-append (substring s 0 1)

" n

(substring s 1i)))
(string—insert "helloworld" 6)

Confirm your expectation with DrRacket and its stepper. 1

2.3 Composing Functions

A program rarely consists of a single function definition. Typically, programs
consist of a main definition and several other functions and turns the result of
one function application into the input for another. In analogy to algebra, we call
this way of defining functions composition, and we call these additional
functions auxiliary functions or helper functions.

Consider the program of figure 12 for filling in letter templates. It consists of
four functions. The first one is the main function, which produces a complete
letter from the first and last name of the addressee plus a signature. The main
function refers to three auxiliary functions to produce the three pieces of the
letter—the opening, body, and signature—and composes the results in the
correct order with string-append.

(define (letter fst 1lst signature-name)
(string—append
(opening fst)
"\I’l\rl"
(body fst 1st)
"\n\n"

(closing signature-name)))

(define (opening fst)
(string-append "Dear " fst ","))

(define (body fst 1st)
(string—append
"We have discovered that all people with the" "\n"
"last name " lst " have won our lottery. So, " "\n"
fst ", " "hurry and pick up your prize."))

(define (closing signature-name)
(string—append
"Sincerely,"
"\n\n"
signature-name

n\nvl))

Figure 12: A batch program

Stop! Enter these definitions into DrRacket’s definitions area, click RUN,
and evaluate these expressions in the interactions area:

> (letter "Matthew" "Fisler" "Felleisen")

"Dear Matthew,\n\n We have discovered that ...\n"
> (letter "Kathi" "Felleisen" "Findler")

"Dear Kathi,\n\nWe have discovered that ...\n"

Aside The result is a long string that contains "\n", which represents a new
line when the string is printed. Now Add (require 2htdp/batch-io) to your
program, which adds the function write-file to its repertoire; it allows you to
print this string to the console:

> (write-file 'stdout (letter "Matt" "Fiss" "Fell"))
Dear Matt,

We have discovered that all people with the
last name Fiss have won our lottery. So,
Matt, hurry and pick up your prize.

Sincerely,

Fell
'stdout

Think of 'stdout as a String for now.

Chapter 2.5 explains such batch programs in some depth. End

In general, when a problem refers to distinct tasks of computation, a program
should consist of one function per task and a main function that puts it all
together. We formulate this idea as a simple slogan:

Define one function per task.

The advantage of following this slogan is that you get reasonably small
functions, each of which is easy to comprehend and whose composition is easy
to understand. Once you learn to design functions, you will recognize that
getting small functions to work correctly is much easier than doing so with large
ones. Better yet, if you ever need to change a part of the program due to some

change to the problem statement, it tends to be much easier to find the relevant
parts when it is organized as a collection of small functions as opposed to a
large, monolithic block.

Here is a small illustration of this point with a sample problem:

Sample Problem The owner of a monopolistic movie theater in a
small town has complete freedom in setting ticket prices. The
more he charges, the fewer people can afford tickets. The less he
charges, the more it costs to run a show because attendance goes
up. In a recent experiment the owner determined a relationship
between the price of a ticket and average attendance.

At a price of $5.00 per ticket, 120 people attend a performance.
For each 10-cent change in the ticket price, the average
attendance changes by 15 people. That is, if the owner charges
$5.10, some 105 people attend on the average; if the price goes
down to $4.90, average attendance increases to 135. Let’s
translate this idea into a mathematical formula:

$(change in price)
50.10

avg. attendance = 120 people — - 15 people

Stop! Explain the minus sign before you proceed.

Unfortunately, the increased attendance also comes at an
increased cost. Every performance comes at a fixed cost of $180
to the owner plus a variable cost of $0.04 per attendee.

The owner would like to know the exact relationship between
profit and ticket price in order to maximize the profit.

While the task is clear, how to go about it is not. All we can say at this point is
that several quantities depend on each other.

When we are confronted with such a situation, it is best to tease out the
various dependencies, one by one:

1. The problem statement specifies how the number of attendees depends on
the ticket price. Computing this number is clearly a separate task and thus
deserves its own function definition:

(define (attendees ticket-price)
(- 120 (* (- ticket-price 5.0) (/ 15 0.1))))

2. The revenue is exclusively generated by the sale of tickets, meaning it is
exactly the product of ticket price and number of attendees:

(define (revenue ticket-price)
(* ticket-price (attendees ticket-price)))

3. The cost consists of two parts: a fixed part ($180) and a variable part that
depends on the number of attendees. Given that the number of attendees is
a function of the ticket price, a function for computing the cost of a show
must also consume the ticket price so that it can reuse the attendees
function:

(define (cost ticket-price)
(+ 180 (* 0.04 (attendees ticket-price))))

4. Finally, profit is the difference between revenue and costs for some given
ticket price:

(define (profit ticket-price)
(- (revenue ticket-price)
(cost ticket-price)))

The BSL definition of profit directly follows the suggestion of the
informal problem description.

These four functions are all there is to the computation of the profit, and we can
now use the profit function to determine a good ticket price.

Exercise 27. Our solution to the sample problem contains several constants
in the middle of functions. As “One Program, Many Definitions” already points
out, it is best to give names to such constants so that future readers understand
where these numbers come from. Collect all definitions in DrRacket’s
definitions area and change them so that all magic numbers are refactored into
constant definitions. 1

Exercise 28. Determine the potential profit for these ticket prices: $1, $2, $3,
$4, and $5. Which price maximizes the profit of the movie theater? Determine

the best ticket price to a dime. 1
Here is an alternative version of the same program, given as a single function
definition:

(define (profit price)
(— (* (+ 120
(» (/ 15 0.1)
(— 5.0 price)))
price)
(+ 180
(» 0.04
(+ 120
(+ (/ 15 0.1)
(— 5.0 price)})))))

Enter this definition into DrRacket and ensure that it produces the same results
as the original version for $1, $2, $3, $4, and $5. A single look should suffice to
show how much more difficult it is to comprehend this one function compared to
the above four.

Exercise 29. After studying the costs of a show, the owner discovered
several ways of lowering the cost. As a result of these improvements, there is no
longer a fixed cost; a variable cost of $1.50 per attendee remains.

Modify both programs to reflect this change. When the programs are
modified, test them again with ticket prices of $3, $4, and $5 and compare the
results. 1

2.4 Global Constants

As the Prologue already says, functions such as profit benefit from the use of
global constants. Every programming language allows programmers to define
constants. In BSL, such a definition has the following shape:

write “(define”,

write down the name,

followed by a space and an expression, and

write down “)”.

The name of a constant is a global variable while the definition is called a
constant definition. We tend to call the expression in a constant definition the
right-hand side of the definition.

Constant definitions introduce names for all forms of data: numbers, images,
strings, and so on. Here are some simple examples:

; the current price of a movie ticket:
(define CURRENT-PRICE 5)

; useful to compute the area of a disk:
(define ALMOST-PI 3.14)

; a blank line:
(define NL "\n")

; an empty scene:
(define MT (empty-scene 100 100))

The first two are numeric constants, the last two are a string and an image. By
convention, we use uppercase letters for global constants because it ensures that
no matter how large the program is, the readers of our programs can easily
distinguish such variables from others.

All functions in a program may refer to these global variables. A reference to
a variable is just like using the corresponding constants. The advantage of using
variable names instead of constants is that a single edit of a constant definition

affects all uses. For example, we may wish to add digits to ALMOST-PI or enlarge
an empty scene:

(define ALMOST-PI 3.14159)

; an empty scene:
(define MT (empty-scene 200 800))

Most of our sample definitions employ literal constants on the right-hand
side, but the last one uses an expression. And indeed, a programmer can use
arbitrary expressions to compute constants. Suppose a program needs to deal
with an image of some size and its center:

(define WIDTH 100)
(define HEIGHT 200)

(define MID-WIDTH (/ WIDTH 2))
(define MID-HEIGHT (/ HEIGHT 2))

It can use two definitions with literal constants on the right-hand side and two
computed constants, that is, variables whose values are not just literal constants
but the results of computing the value of an expression.

Again, we state an imperative slogan:

For every constant mentioned in a problem statement, introduce
one constant definition.

Exercise 30. Define constants for the price optimization program at the
movie theater so that the price sensitivity of attendance (15 people for every 10
cents) becomes a computed constant. 1

2.5 Programs

You are ready to create simple programs. From a coding perspective, a program
is just a bunch of function and constant definitions. Usually one function is
singled out as the “main” function, and this main function tends to compose
others. From the perspective of launching a program, however, there are two
distinct kinds:

* a batch program consumes all of its inputs at once and computes its result.
Its main function is the composition of auxiliary functions, which may
refer to additional auxiliary functions, and so on. When we launch a batch
program, the operating system calls the main function on its inputs and
waits for the program’s output.

* an interactive program consumes some of its inputs, computes, produces
some output, consumes more input, and so on. When an input shows up,
we speak of an event, and we create interactive programs as event-driven
programs. The main function of such an event-driven program uses an
expression to describe which functions to call for which kinds of events.
These functions are called event handlers.

When we launch an interactive program, the main function informs the
operating system of this description. As soon as input events happen, the
operating system calls the matching event handler. Similarly, the operating
system knows from the description when and how to present the results of
these function calls as output.

This book focuses mostly on programs that interact via graphical user interfaces
(GUI); there are other kinds of interactive programs, and you will get to know
those as you continue to study computer science.

Batch Programs As mentioned, a batch program consumes all of its inputs
at once and computes the result from these inputs. Its main function expects
some arguments, hands them to auxiliary functions, receives results from those,
and composes these results into its own final answer.

Once programs are created, we want to use them. In DrRacket, we launch
batch programs in the interactions area so that we can watch the program at
work.

Programs are even more useful if they can retrieve the input from some file
and deliver the output to some other file. Indeed, the name “batch program”
dates to the early days of computing when a program read a file (or several files)
from a batch of punch cards and placed the result in some other file(s), also a
batch of cards. Conceptually, a batch program reads the input file(s) at once and
also produces the result file(s) all at once.

We create such file-based batch programs with the 2htdp/batch-io library,
which adds two functions to our vocabulary (among others):

* read-file, which reads the content of an entire file as a string, and
* write-file, which creates a file from a given string.
These functions write strings to files and read strings from them:

> (write-file "sample.dat" "212")
"sample.dat"

> (read-file "sample.dat")

I|212I|

Before you evaluate these expressions, save the definitions area in a file.

After the first interaction the file named "sample.dat" contains

212

The result of write-file is an acknowledgment that it has placed the string in
the file. If the file already exists, it replaces its content with the given string;
otherwise, it creates a file and makes the given string its content. The second
interaction, (read-file "sample.dat"), produces "212" because it turns the
content of "sample.dat" into a String.

For pragmatic reasons, write-file also accepts 'stdout, a special kind of
token, as the first argument. It then displays the resulting file content in the
current interactions area, for example:

> (write-file 'stdout "212\n")
212
'stdout

The names 'stdout and 'stdin are short for standard output device and standard input device,
respectively.

By analogy, read-file accepts 'stdin in lieu of a file name and then reads
input from the current interactions area.

Let’s illustrate the creation of a batch program with a simple example.
Suppose we wish to create a program that converts a temperature measured on a
Fahrenheit thermometer into a Celsius temperature. Don’t worry, this question
isn’t a test about your physics knowledge; here is the conversion formula:

C=3-(f-32

This book is not about memorizing facts, but we do expect you to know where to find them. Do you
know where to find out how temperatures are converted?

Naturally, in this formula f is the Fahrenheit temperature and C is the Celsius
temperature. While this formula might be good enough for a pre-algebra
textbook, a mathematician or a programmer would write C(f) on the left side of
the equation to remind readers that f is a given value and C is computed from f.

Translating this formula into BSL is straightforward:

(define (C f)
(* 5/9 (- T 32)))

Recall that 5/9 is a number, a rational fraction to be precise, and that C depends
on the given f, which is what the function notation expresses.
Launching this batch program in the interactions area works as usual:

> (C 32)
(C]

> (C 212)
100

> (C -40)
-40

But suppose we wish to use this function as part of a program that reads the
Fahrenheit temperature from a file, converts this number into a Celsius

temperature, and then creates another file that contains the result.
Once we have the conversion formula in BSL, creating the main function
means composing ¢ with existing primitive functions:

(define (convert in out)
(write—-file out
(string—append
(number->string
(C
(string—->number
(read—file in))))

"\n")))

We call the main function convert. It consumes two file names: in for the file
where the Fahrenheit temperature is found and out for where we want the
Celsius result. A composition of five functions computes convert’s result. Let’s
step through convert’s body carefully:

1. (read-file in) retrieves the content of the named file as a string;
2. string->number turns this string into a number;

3. C interprets the number as a Fahrenheit temperature and converts it into a
Celsius temperature;

4. number->string consumes this Celsius temperature and turns it into a
string; and

5. (write-file out..) places this string into the file named out.

This long list of steps might look overwhelming, and it doesn’t even include the
string-append part. Stop! Explain

(string-append .. "\n")

In contrast, the average function composition in a pre-algebra course
involves two functions, possibly three. Keep in mind, though, that programs
accomplish a real-world purpose while exercises in algebra merely illustrate the

idea of function composition.
At this point, we can experiment with convert. To start with, we use write-
file to create an input file for convert:

> (write-file "sample.dat" "212")
"sample.dat"

> (convert "sample.dat" 'stdout)
100

'stdout

> (convert "sample.dat" "out.dat")
"out.dat"

> (read-file "out.dat")

n 100 n

You can also create "sample.dat" with a file editor.

For the first interaction, we use 'stdout so that we can view what convert
outputs in DrRacket’s interactions area. For the second one, convert is given the
name "out.dat". As expected, the call to convert returns this string; from the
description of write-file we also know that it deposited a Fahrenheit
temperature in the file. Here we read the content of this file with read-file, but
you could also view it with a text editor.

In addition to running the batch program, it is also instructive to step through
the computation. Make sure that the file "sample.dat" exists and contains just a
number, then click the STEP button in DrRacket. Doing so opens another
window in which you can peruse the computational process that the call to the
main function of a batch program triggers. You will see that the process follows
the above outline.

Exercise 31. Recall the letter program from chapter 2.3. Here is how to
launch the program and have it write its output to the interactions area:

> (write-file

'stdout

(letter "Matthew" "Fisler" "Felleisen"))
Dear Matthew,

We have discovered that all people with the
last name Fisler have won our lottery. So,
Matthew, hurry and pick up your prize.

Sincerely,

Felleisen
'stdout

Of course, programs are useful because you can launch them for many different
inputs. Run letter on three inputs of your choice.

Here is a letter-writing batch program that reads names from three files and
writes a letter to one:

(define (main in-fst in-1st in-signature out)
(write—-file out
(letter (read-file in—-fst)
(read—-file in—-1st)
(read—-file in-signature))))

The function consumes four strings: the first three are the names of input files
and the last one serves as an output file. It uses the first three to read one string
each from the three named files, hands these strings to letter, and eventually
writes the result of this function call into the file named by out, the fourth
argument to main.

Create appropriate files, launch main, and check whether it delivers the
expected letter in a given file. 1

Interactive Programs Batch programs are a staple of business uses of
computers, but the programs people encounter now are interactive. In this day
and age, people mostly interact with desktop applications via a keyboard and a
mouse. Furthermore, interactive programs can also react to computer-generated
events, for example, clock ticks or the arrival of a message from some other
computer.

Exercise 32. Most people no longer use desktop computers just to run
applications but also employ cell phones, tablets, and their cars’ information
control screen. Soon people will use wearable computers in the form of
intelligent glasses, clothes, and sports gear. In the somewhat more distant future,
people may come with built-in bio computers that directly interact with body
functions. Think of ten different forms of events that software applications on
such computers will have to deal with. 1

The purpose of this section is to introduce the mechanics of writing
interactive BSL programs. Because many of the project-style examples in this
book are interactive programs, we introduce the ideas slowly and carefully. You
may wish to return to this section when you tackle some of the interactive
programming projects; a second or third reading may clarify some of the
advanced aspects of the mechanics.

By itself, a raw computer is a useless piece of physical equipment. It is called
hardware because you can touch it. This equipment becomes useful once you
install software, that is, a suite of programs. Usually the first piece of software to
be installed on a computer is an operating system. It has the task of managing the
computer for you, including connected devices such as the monitor, the
keyboard, the mouse, the speakers, and so on. The way it works is that when a
user presses a key on the keyboard, the operating system runs a function that
processes keystrokes. We say that the keystroke is a key event, and the function
is an event handler. In the same vein, the operating system runs an event handler
for clock ticks, for mouse actions, and so on. Conversely, after an event handler
is done with its work, the operating system may have to change the image on the
screen, ring a bell, print a document, or perform a similar action. To accomplish
these tasks, it also runs functions that translate the operating system’s data into
sounds, images, actions on the printer, and so on.

Naturally, different programs have different needs. One program may
interpret keystrokes as signals to control a nuclear reactor; another passes them
to a word processor. To make a general-purpose computer work on these
radically different tasks, different programs install different event handlers. That
is, a rocket-launching program uses one kind of function to deal with clock ticks
while an oven’s software uses a different kind.

Designing an interactive program requires a way to designate some function
as the one that takes care of keyboard events, another function for dealing with
clock ticks, a third one for presenting some data as an image, and so forth. It is
the task of an interactive program’s main function to communicate these
designations to the operating system, that is, the software platform on which the
program is launched.

DrRacket is a small operating system, and BSL is one of its programming
languages. The latter comes with the Zhtdp/universe library, which provides
big-bang, a mechanism for telling the operating system which function deals
with which event. In addition, big-bang keeps track of the state of the program.

To this end, it comes with one required sub-expression, whose value becomes
the initial state of the program. Otherwise big-bang consists of one required
clause and many optional clauses. The required to-draw clause tells DrRacket
how to render the state of the program, including the initial one. Each of the
other, optional clauses tells the operating system that a certain function takes
care of a certain event. Taking care of an event in BSL means that the function
consumes the state of the program and a description of the event, and that it
produces the next state of the program. We therefore speak of the current state
of the program.

Terminology In a sense, a big-bang expression describes how a program
connects with a small segment of the world. This world might be a game that the
program’s users play, an animation that the user watches, or a text editor that the
user employs to manipulate some notes. Programming language researchers
therefore often say that big-bang is a description of a small world: its initial
state, how states are transformed, how states are rendered, and how big-bang
may determine other attributes of the current state. In this spirit, we also speak of
the state of the world and even call big-bang programs world programs. End

Let’s study this idea step-by-step, starting with this definition:

(define (number->square s)
(square s "solid" "red"))

The function consumes a positive number and produces a solid red square of that
size. After clicking RUN, experiment with the function, like this:

> (number—->square 5)
> (number—->square 10)

> (number->square 20)

It behaves like a batch program, consuming a number and producing an image,
which DrRacket renders for you.
Now try the following big-bang expression in the interactions area:

> (big-bang 100 [to-draw number->square])

A separate window appears, and it displays a 100 x 100 red square. In addition,
the DrRacket interactions area does not display another prompt; it is as if the
program keeps running, and this is indeed the case. To stop the program, click
on DrRacket’s STOP button or the window’s CLOSE button:

> (big-bang 100 [to-draw number->square])
100

When DrRacket stops the evaluation of a big-bang expression, it returns the
current state, which in this case is just the initial state: 100.
Here is a more interesting big-bang expression:

> (big-bang 100
[to-draw number->square]
[on-tick sub1]
[stop-when zero?])

This big-bang expression adds two optional clauses to the previous one: the on-
tick clause tells DrRacket how to deal with clock ticks and the stop-when
clause says when to stop the program. We read it as follows, starting with 100 as
the initial state:

1. every time the clock ticks, subtract 1 from the current state;
2. then check whether zero? is true of the new state and if so, stop; and

3. every time an event handler returns a value, use number ->square to render
it as an image.

Now hit the “return” key and observe what happens. Eventually the evaluation
of the expressions terminates and DrRacket displays 6.

The big-bang expression keeps track of the current state. Initially this state
is 100. Every time the clock ticks, it calls the clock-tick handler and gets a new
state. Hence, the state of big-bang changes as follows:

100, 99, 98,., 2, 1, 0

When the state’s value becomes 0, the evaluation is done. For every other state
—from 100 to 1—big-bang translates the state into an image, using number -
>square as the to-draw clause tells it to. Hence, the window displays a red
square that shrinks from 100 x 100 pixels to 1 % 1 pixel over 100 clock ticks.

Let’s add a clause for dealing with key events. First, we need a function that
consumes the current state and a string that describes the key event and then
returns a new state:

(define (reset s ke)
100)

This function throws away its arguments and returns 100, which is the initial
state of the big-bang expression we wish to modify. Second, we add an on-key
clause to the big-bang expression:

> (big-bang 100
[to-draw number->square]
[on-tick sub1]
[stop-when zero?]
[on-key reset])

Stop! Explain what happens when you hit “return”, count to 10, and finally press
"a".

What you will see is that the red square shrinks at the rate of one pixel per
clock tick. As soon as you press the "a" key, though, the red square reinflates to
full size because reset is called on the current length of the square and "a" and
returns 100. This number becomes big-bang’s new state and number->square
renders it as a full-sized red square.

In order to understand the evaluation of big-bang expressions in general,
let’s look at a schematic version:

(big-bang cw0
[on-tick tock]
[on-key ke-h]
[on-mouse me-h]
[to-draw render]
[stop-when end?]

)

This big-bang expression specifies three event handlers—tock, ke-h, and me-h
—and a stop-when clause.

The evaluation of this big-bang expression starts with cwe, which is usually
an expression. DrRacket, our operating system, installs the value of cwe as the
current state. It uses render to translate the current state into an image, which is
then displayed in a separate window. Indeed, render is the only means for a
big-bang expression to present data to the world.

Here is how events are processed:

» Every time the clock ticks, DrRacket applies tock to big-bang’s current
state and receives a value in response; big-bang treats this return value as
the next current state.

» Every time a key is pressed, DrRacket applies ke-h to big-bang’s current
state and a string that represents the key; for example, pressing the “a” key
is represented with "a" and the left arrow key with "left". When ke-h
returns a value, big-bang treats it as the next current state.

» Every time a mouse enters the window, leaves it, moves, or is clicked,
DrRacket applies me-h to big-bang’s current state, the event’s x-and y-
coordinates, and a string that represents the kind of mouse event that
happened; for example, clicking a mouse’s button is represented with
"button-down". When me-h returns a value, big-bang treats it as the next
current state.

All events are processed in order; if two events seem to happen at the same time,
DrRacket acts as a tie-breaker and arranges them in some order.

After an event is processed, big-bang uses both end? and render to check
the current state:

* (end? cw) produces a Boolean value. If it is ##true, big-bang stops the
computation immediately. Otherwise it proceeds.

* (render cw) is expected to produce an image and big-bang displays this
image in a separate window.

The table in figure 13 concisely summarizes this process. In the first row, it

lists names for the current states. The second row enumerates names for the
events that DrRacket encounters: e, e;, and so on. Each e; might be a clock tick,
a key press, or a mouse event. The next three rows specify the result of dealing
with the event:

 If e, is a clock tick, big-bang evaluates (tock cwy) to produce cw;.

 If ey is a key event, (ke-h cw; e¢) is evaluated and yields cw;. The handler
must be applied to the event itself because, in general, programs are going
to react to each key differently.

* If ey is a mouse event, big-bang runs (me-h cw, e, ..) to get cw;. The call is
a sketch because a mouse event e, is really associated with several pieces
of data—its nature and its coordinates—and we just wish to indicate that
much.

* Finally, render turns the current state into an image, which is indicated by
the last row. DrRacket displays these images in the separate window.

current state cwo cwy
event eo eq
on clock tick (tock cwg) tock cwy)

on keystroke (ke—h cwqy ep)
on mouse event (me-h cwg ey ...)
its image (render cwy)

ke-h cwq e1)
me—-h cwy; e; ...)
render Cwq)

(
(
(
(

Figure 13: How big-bang works

The column below cw; shows how cw, is generated, depending on what kind of
event e, takes place.

Let’s interpret this table with the specific sequence of events: the user
presses the “a” key, then the clock ticks, and finally the user clicks the mouse to
trigger a “button down” event at position (90,100). Then, in Racket notation,

1. cwi is the result of (ke-h cw® "a");
2. cw2 is the result of (tock cw1); and

3. cw3 is the result of (me-h cw2 90 100 "button-down").

We can actually express these three steps as a sequence of three definitions:

(define cwl (ke-h cw@ "a"))
(define cw2 (tock cwl))
(define cw3 (me-h cw2 "button-down" 90 100))

Stop! How does big-bang display each of these three states?
Now let’s consider a sequence of three clock ticks. In that case,

1. cwi is the result of (tock cwo);
2. cw2 is the result of (tock cw1); and
3. cw3 is the result of (tock cw2).

Or, reformulated in BSL:

(define cwl (tock cw0))
(define cw2 (tock cwl))
(define cw3 (tock cw2))

Indeed, we can also determine cw3 via a single expression:

(tock (tock (tock cw0)))

This determines the state that big-bang computes after three clock ticks. Stop!
Reformulate the first sequence of events as an expression.

In short, the sequence of events determines in which order big-bang
conceptually traverses the above table of possible states to arrive at the current
state for each time slot. Of course, big-bang does not touch the current state; it
merely safeguards it and passes it to event handlers and other functions when
needed.

From here, it is straightforward to define a first interactive program. See
figure 14. The program consists of two constant definitions followed by three
function definitions: main, which launches a big-bang interactive program;
place-dot-at, which translates the current state into an image; and stop, which
throws away its inputs and produces 0.

(define BACKGROUND (empty-scene 100 100))
(define DOT (circle 3 "solid" "red"))

(define (main vy)
(big-bang y
[on-tick subl]
[stop—when zero?]
[to—draw place—-dot-at]
[on-key stopl))

(define (place-dot-at vy)
(place—-image DOT 50 y BACKGROUND))

(define (stop vy ke)
0)

Figure 14: A first interactive program

After clicking RUN, we can ask DrRacket to evaluate applications of these
handler functions. This is one way to confirm their workings:

> (place—-dot—-at 89)

> (ghap & "gv)
0

Stop! Try now to understand how main reacts when you press a key.
One way to find out whether your conjecture is correct is to launch the main
function on some reasonable number:

> (main 90)

Relax.

By now, you may feel that these first two chapters are overwhelming. They
introduce many new concepts, including a new language, its vocabulary, its
meaning, its idioms, a tool for writing down texts in this vocabulary, and a way

of running these programs. Confronted with this plethora of ideas, you may
wonder how one creates a program when presented with a problem statement.
To answer this central question, the next chapter takes a step back and explicitly
addresses the systematic design of programs. So take a breather and continue
when ready.

3 How to Design Programs

The first few chapters of this book show that learning to program requires some
mastery of many concepts. On the one hand, programming needs a language, a
notation for communicating what we wish to compute. The languages for
formulating programs are artificial constructions, though acquiring a
programming language shares some elements with acquiring a natural language.
Both come with vocabulary, grammar, and an understanding of what “phrases”
mean.

On the other hand, it is critical to learn how to get from a problem statement to a
program. We need to determine what is relevant in the problem statement and
what can be ignored. We need to tease out what the program consumes, what it
produces, and how it relates inputs to outputs. We have to know, or find out,
whether the chosen language and its libraries provide certain basic operations for
the data that our program is to process. If not, we might have to develop
auxiliary functions that implement these operations. Finally, once we have a
program, we must check whether it actually performs the intended computation.
And this might reveal all kinds of errors, which we need to be able to understand
and fix.

All this sounds rather complex, and you might wonder why we don’t just
muddle our way through, experimenting here and there, leaving well enough
alone when the results look decent. This approach to programming, often dubbed
“garage programming,” is common and succeeds on many occasions; sometimes
it is the launching pad for a start-up company. Nevertheless, the start-up cannot
sell the results of the “garage effort” because only the original programmers and
their friends can use them.

A good program comes with a short write-up that explains what it does, what
inputs it expects, and what it produces. Ideally, it also comes with some
assurance that it actually works. In the best circumstances, the program’s
connection to the problem statement is evident so that a small change to the
problem statement is easy to translate into a small change to the program.
Software engineers call this a “programming product.”

All this extra work is necessary because programmers don’t create programs
for themselves. Programmers write programs for other programmers to read, and
on occasion, people run these programs to get work done. Most programs are

large, complex collections of collaborating functions, and nobody can write all
these functions in a day. Programmers join projects, write code, leave projects;
others take over their programs and work on them. Another difficulty is that the
programmer’s clients tend to change their mind about what problem they really
want solved. They usually have it almost right, but more often than not, they get
some details wrong. Worse, complex logical constructions such as programs
almost always suffer from human errors; in short, programmers make mistakes.
Eventually someone discovers these errors and programmers must fix them.
They need to reread the programs from a month ago, a year ago, or twenty years
ago and change them.

The word “other” also includes older versions of the programmer who usually cannot recall all the
thinking that the younger version put into the production of the program.

Exercise 33. Research the “year 2000” problem. 1

Here we present a design recipe that integrates a step-by-step process with a
way of organizing programs around problem data. For the readers who don’t like
to stare at blank screens for a long time, this design recipe offers a way to make
progress in a systematic manner. For those of you who teach others to design
programs, the recipe is a device for diagnosing a novice’s difficulties. For others,
our recipe might be something that they can apply to other areas—say, medicine,
journalism, or engineering. For those who wish to become real programmers, the
design recipe also offers a way to understand and work on existing programs—
though not all programmers use a method like this design recipe to come up with
programs. The rest of this chapter is dedicated to the first baby steps into the
world of the design recipe; the following chapters and parts refine and expand
the recipe in one way or another.

3.1 Designing Functions

Information and Data The purpose of a program is to describe a computational
process that consumes some information and produces new information. In this
sense, a program is like the instructions a mathematics teacher gives to grade
school students. Unlike a student, however, a program works with more than
numbers: it calculates with navigation information, looks up a person’s address,
turns on switches, or inspects the state of a video game. All this information
comes from a part of the real world—often called the program’s domain—and
the results of a program’s computation represent more information in this
domain.

Information plays a central role in our description. Think of information as
facts about the program’s domain. For a program that deals with a furniture
catalog, a “table with five legs” or a “square table of two by two meters” are
pieces of information. A game program deals with a different kind of domain,
where “five” might refer to the number of pixels per clock tick that some object
travels on its way from one part of the canvas to another. Or, a payroll program
is likely to deal with “five deductions.”

For a program to process information, it must turn it into some form of data
in the programming language; then it processes the data; and once it is finished,
it turns the resulting data into information again. An interactive program may
even intermingle these steps, acquiring more information from the world as
needed and delivering information in between.

We use BSL and DrRacket so that you do net have to worry about the
translation of information into data. In DrRacket’s BSL you can apply a function
directly to data and observe what it produces. As a result, we avoid the serious
chicken-and-egg problem of writing functions that convert information into data
and vice versa. For simple kinds of information, designing such program pieces
is trivial; for anything other than simple information, you need to know about
parsing, for example, and that immediately requires a lot of expertise in program
design.

Software engineers use the slogan model-view-controller (MVC) for the way
BSL and DrRacket separate data processing from parsing information into data
and turning data into information. Indeed, it is now accepted wisdom that well-
engineered software systems enforce this separation, even though most

introductory books still comingle them. Thus, working with BSL and DrRacket
allows you to focus on the design of the core of programs, and, when you have
enough experience with that, you can learn to design the information-data
translation parts.

Here we use two preinstalled teachpacks to demonstrate the separation of
data and information: 2htdp/batch-io and 2htdp/universe. Starting with this
chapter, we develop design recipes for batch and interactive programs to give
you an idea of how complete programs are designed. Do keep in mind that the
libraries of full-fledged programming languages offer many more contexts for
complete programs, and that you will need to adapt the design recipes
appropriately.

Given the central role of information and data, program design must start
with the connection between them. Specifically, we, the programmers, must
decide how to use our chosen programming language to represent the relevant
pieces of information as data and how we should interpret data as information.
Figure 15 explains this idea with an abstract diagram.

domain: program:

represent

interfpret

Figure 15: From information to data, and back

To make this idea concrete, let’s work through some examples. Suppose you
are designing a program that consumes and produces information in the form of
numbers. While choosing a representation is easy, an interpretation requires
explaining what a number such as 42 denotes in the domain:

* 42 may refer to the number of pixels from the top margin in the domain of
images;

* 42 may denote the number of pixels per clock tick that a simulation or
game object moves;

* 42 may mean a temperature, on the Fahrenheit, Celsius, or Kelvin scale for
the domain of physics;

* 42 may specify the size of some table if the domain of the program is a
furniture catalog; or

42 could just count the number of characters in a string.

The key is to know how to go from numbers as information to numbers as data
and vice versa.

Since this knowledge is so important for everyone who reads the program,
we often write it down in the form of comments, which we call data definitions.
A data definition serves two purposes. First, it names a collection of data—a
class—using a meaningful word. Second, it informs readers how to create
elements of this class and how to decide whether some arbitrary piece of data
belongs to the collection.

Computing scientists use “class” to mean something like a “mathematical set.”

Here is a data definition for one of the above examples:

; A Temperature is a Number.
; interpretation represents Celsius degrees

The first line introduces the name of the data collection, Temperature, and tells
us that the class consists of all Numbers. So, for example, if we ask whether 102
is a temperature, you can respond with “yes” because 102 is a number and all
numbers are temperatures. Similarly, if we ask whether "cold" is a Temperature,
you will say “no” because no string belongs to Temperature. And, if we asked
you to make up a sample Temperature, you might come up with something like
-400.

If you happen to know that the lowest possible temperature is approximately
—-274° C, you may wonder whether it is possible to express this knowledge in a

data definition. Since our data definitions are really just English descriptions of
classes, you may indeed define the class of temperatures in a much more
accurate manner than shown here. In this book, we use a stylized form of
English for such data definitions, and the next chapter introduces the style for
imposing constraints such as “larger than -274.”

So far, you have encountered the names of four classes of data: Number,
String, Image, and Boolean. With that, formulating a new data definition means
nothing more than introducing a new name for an existing form of data, say,
“temperature” for numbers. Even this limited knowledge, though, suffices to
explain the outline of our design process.

At this point, you may wish to reread the section on Systematic Program Design in the Preface,
especially figure 1.

The Design Process Once you understand how to represent input
information as data and to interpret output data as information, the design of an
individual function proceeds according to a straightforward process:

1. Express how you wish to represent information as data. A one-line
comment suffices:

; We use numbers to represent centimeters.

Formulate data definitions, like the one for Temperature, for the classes of
data you consider critical for the success of your program.

2. Write down a signature, a statement of purpose, and a function header.

A function signature is a comment that tells the readers of your design
how many inputs your function consumes, from which classes they are
drawn, and what kind of data it produces. Here are three examples for
functions that respectively

» consume one String and produce a Number:

; String -> Number

 consume a Temperature and produce a String:

; Temperature -> String

As this signature points out, introducing a data definition as an
alias for an existing form of data makes it easy to read the
intention behind signatures.

Nevertheless, we recommend that you stay away from aliasing
data definitions for now. A proliferation of such names can cause
quite a lot of confusion. It takes practice to balance the need for
new names and the readability of programs, and there are more
important ideas to understand right now.

» consume a Number, a String, and an Image:

; Number String Image -> Image

Stop! What does this function produce?

A purpose statement is a BSL comment that summarizes the purpose of
the function in a single line. If you are ever in doubt about a purpose
statement, write down the shortest possible answer to the question

what does the function compute?

Every reader of your program should understand what your functions
compute without having to read the function itself.

A multi-function program should also come with a purpose statement.
Indeed, good programmers write two purpose statements: one for the
reader who may have to modify the code and another one for the person
who wishes to use the program but not read it.

Finally, a header is a simplistic function definition, also called a stub. Pick
one variable name for each class of input in the signature; the body of the
function can be any piece of data from the output class. These three
function headers match the above three signatures:

* (define (f a-string) 0)

* (define(g n) "a")

* (define(h num str img) (empty-scene 100 100))

Our parameter names reflect what kind of data the parameter represents.
Sometimes, you may wish to use names that suggest the purpose of the
parameter.

When you formulate a purpose statement, it is often useful to employ the
parameter names to clarify what is computed. For example,

; Number String Image -> Image
; adds s to img,

; Y pixels from the top and 10 from the left
(define (add-image y s img)

(empty-scene 100 100))

At this point, you can click the RUN button and experiment with the
function. Of course, the result is always the same value, which makes
these experiments quite boring.

3. Illustrate the signature and the purpose statement with some functional
examples. To construct a functional example, pick one piece of data from
each input class from the signature and determine what you expect back.

Suppose you are designing a function that computes the area of a square.
Clearly this function consumes the length of the square’s side, and that is
best represented with a (positive) number. Assuming you have done the
first process step according to the recipe, you add the examples between
the purpose statement and the header and get this:

; Number -> Number
; computes the area of a square with side len
; given: 2, expect: 4

; given: 7, expect: 49
(define (area-of-square len) 0)

4. The next step is to take inventory, to understand what are the givens and
what we need to compute. For the simple functions we are considering
right now, we know that they are given data via parameters. While

parameters are placeholders for values that we don’t know yet, we do
know that it is from this unknown data that the function must compute its
result. To remind ourselves of this fact, we replace the function’s body
with a template.

We owe the term “inventory” to Stephen Bloch.
y P

For now, the template contains just the parameters, so that the preceding
example looks like this:

(define (area-of-square len)
(.. 1len ..))

The dots remind you that this isn’t a complete function, but a template, a
suggestion for an organization.

The templates of this section look boring. As soon as we introduce new
forms of data, templates become interesting.

5. It is now time to code. In general, to code means to program, though often
in the narrowest possible way, namely, to write executable expressions and
function definitions.

To us, coding means to replace the body of the function with an expression
that attempts to compute from the pieces in the template what the purpose
statement promises. Here is the complete definition for area-of-square:

; Number -> Number
; computes the area of a square with side 1len
; given: 2, expect: 4
; given: 7, expect: 49
(define (area-of-square len)
(sqr len))

To complete the add-image function takes a bit more work than that: see
figure 16. In particular, the function needs to turn the given string s into an
image, which is then placed into the given scene.

; Number String Image -> Image
; adds s to img, y pixels from top, 10 pixels to the left
; given:

5 for vy,

"hello" for s, and

(empty—-scene 100 100) for img

; expected:
(place-image (text "hello"™ 10 "red") 10 5 ...)
where ... is (empty-scene 100 100)

(define (add-image y s img)
(place—-image (text s 10 "red") 10 y img))

Figure 16: The completion of design step 5

6. The last step of a proper design is to test the function on the examples that
you worked out before. For now, testing works like this. Click the RUN
button and enter function applications that match the examples in the
interactions area:

> (area-of-square 2)
4
>(area-of-square 7)
49

The results must match the output that you expect; you must inspect each
result and make sure it is equal to what is written down in the example
portion of the design. If the result doesn’t match the expected output,
consider the following three possibilities:

(a) You miscalculated and determined the wrong expected output for
some of the examples.

(b) Alternatively, the function definition computes the wrong result.
When this is the case, you have a logical error in your program, also
known as a bug.

(c) Both the examples and the function definition are wrong.

When you do encounter a mismatch between expected results and actual
values, we recommend that you first reassure yourself that the expected
results are correct. If so, assume that the mistake is in the function
definition. Otherwise, fix the example and then run the tests again. If you

are still encountering problems, you may have encountered the third,
somewhat rare, situation.

3.2 Finger Exercises: Functions

The first few of the following exercises are almost copies of those in chapter 2.1,
though where the latter use the word “define” the exercises below use the word
“design.” What this difference means is that you should work through the design
recipe to create these functions and your solutions should include all relevant
pieces.

As the title of the section suggests, these exercises are practice exercises to
help you internalize the process. Until the steps become second nature, never
skip one because doing so leads to easily avoidable errors. There is plenty of
room left in programming for complicated errors; we have no need to waste our
time on silly ones.

Exercise 34. Design the function string-first, which extracts the first
character from a non-empty string. Don’t worry about empty strings. 1

Exercise 35. Design the function string-last, which extracts the last
character from a non-empty string. 1

Exercise 36. Design the function image-area, which counts the number of
pixels in a given image. 1

Exercise 37. Design the function string-rest, which produces a string like
the given one with the first character removed. 1

Exercise 38. Design the function string-remove-last, which produces a
string like the given one with the last character removed. 1

3.3 Domain Knowledge

It is natural to wonder what knowledge it takes to code up the body of a
function. A little bit of reflection tells you that this step demands an appropriate
grasp of the domain of the program. Indeed, there are two forms of such domain
knowledge:

1. Knowledge from external domains, such as mathematics, music, biology,
civil engineering, art, and so on. Because programmers cannot know all of
the application domains of computing, they must be prepared to
understand the language of a variety of application areas so that they can
discuss problems with domain experts. Mathematics is at the intersection
of many, but not all, domains. Hence, programmers must often pick up
new languages as they work through problems with domain experts.

2. Knowledge about the library functions in the chosen programming
language. When your task is to translate a mathematical formula involving
the tangent function, you need to know or guess that your chosen language
comes with a function such as BSL’s tan. When your task involves
graphics, you will benefit from understanding the possibilities of the
2htdp/image library.

Since you can never predict the area you will be working in, or which
programming language you will have to use, it is imperative that you have a
solid understanding of the full possibilities of whatever computer languages are
around and suitable. Otherwise some domain expert with half-baked
programming knowledge will take over your job.

You can recognize problems that demand domain knowledge from the data
definitions that you work out. As long as the data definitions use classes that
exist in the chosen programming language, the definition of the function body
(and program) mostly relies on expertise in the domain. Later, when we
introduce complex forms of data, the design of functions demands computer
science knowledge.

3.4 From Functions to Programs

Not all programs consist of a single function definition. Some require several
functions; many also use constant definitions. No matter what, it is always
important to design every function systematically, though global constants as
well as auxiliary functions change the design process a bit.

When you have defined global constants, your functions may use them to
compute results. To remind yourself of their existence, you may wish to add
these constants to your templates; after all, they belong to the inventory of things
that may contribute to the function definition.

Multi-function programs come about because interactive programs
automatically need functions that handle key and mouse events, functions that
render the state as music, and possibly more. Even batch programs may require
several different functions because they perform several separate tasks.
Sometimes the problem statement itself suggests these tasks; other times you
will discover the need for auxiliary functions as you are in the middle of
designing some function.

For these reasons, we recommend keeping around a list of needed functions
or a wish list. Each entry on a wish list should consist of three things: a
meaningful name for the function, a signature, and a purpose statement. For the
design of a batch program, put the main function on the wish list and start
designing it. For the design of an interactive program, you can put the event
handlers, the stop-when function, and the scene-rendering function on the list.
As long as the list isn’t empty, pick a wish and design the function. If you
discover during the design that you need another function, put it on the list.
When the list is empty, you are done.

We owe the term “wish list” to John Stone.

3.5 On Testing

Testing quickly becomes a labor-intensive chore. While it is easy to run small
programs in the interactions area, doing so requires a lot of mechanical labor and
intricate inspections. As programmers grow their systems, they wish to conduct
many tests. Soon this labor becomes overwhelming, and programmers start to
neglect it. At the same time, testing is the first tool for discovering and
preventing basic flaws. Sloppy testing quickly leads to buggy functions—that is,
functions with hidden problems—and buggy functions retard projects, often in
multiple ways.

Hence, it is critical to mechanize tests instead of performing them manually.
Like many programming languages, BSL includes a testing facility, and
DrRacket is aware of this facility. To introduce this testing facility, we take a
second look at the function that converts temperatures in Fahrenheit to Celsius
temperatures from chapter 2.5. Here is the definition:

; Number -> Number
; converts Fahrenheit temperatures to Celsius
; given 32, expect 0
; given 212, expect 100
; given $-$40, expect $-$40
define (f2c f)
(* 5/79 ($-% T 32)))

Testing the function’s examples calls for three computations and three
comparisons between two numbers each. You can formulate these tests and add
them to the definitions area in DrRacket:

(check-expect (f2c $-$40) $-$40)
(check-expect (f2c 32) 0)
(check-expect (f2c 212) 100)

When you now click the RUN button, you see a report from BSL that the
program passed all three tests—and you have nothing else to do.

In addition to getting tests to run automatically, the check-expect forms
show another advantage when tests fail. To see how this works, change one of

the above tests so that the result is wrong, for example

(check-expect (f2c $-$40) 40)

When you now click the RUN button, an additional window pops up. The
window’s text explains that one of three tests failed. For the failed test, the
window displays three pieces: the computed value, the result of the function call
(—40); the expected value (40); and a hyperlink to the text of the failed test case.
You can place check-expect specifications above or below the function
definitions that they test. When you click RUN, DrRacket collects all check-
expect specifications and evaluates them after all function definitions have been
added to the “vocabulary” of operations. Figure 17 shows how to exploit this
freedom to combine the example and test step. Instead of writing down the
examples as comments, you can translate them directly into tests. When you’re
all done with the design of the function, clicking RUN performs the test. And if
you ever change the function for some reason, the next click retests the function.

; Number -> Number
; converts Fahrenheit temperatures to Celsius temperatures

(check-expect (f2c —-40) -40)
(check-expect (f2c 32) 0)
(check-expect (f2c 212) 100)

(define (f2c f)
(» 5/9 (- £ 32)))

Figure 17: Testing in BSL

Last but not least, check-expect also works for images. That is, you can test
image-producing functions. Say you wish to design the function render, which
places the image of a car, dubbed CAR, into a background scene, named
BACKGROUND. For the design of this function, you may formulate the tests such as
the following:

(check—-expect (render 50)

oe)
(check—-expect (render 200)

| ee)

Alternatively, you could write them like this:

render 50)

place—-image CAR 50 Y-CAR BACKGROUND))
render 200)

place—image CAR 200 Y-CAR BACKGROUND))

(check—-expect

(check—-expect

~ e~ o~~~

This alternative approach helps you figure out how to express the function body
and is therefore preferable. One way to develop such expressions is to
experiment in the interactions area.

For additional ways of formulating tests, see intermezzo 1.

Because it is so useful to have DrRacket conduct the tests and not to check
everything yourself manually, we immediately switch to this style of testing for
the rest of the book. This form of testing is dubbed unit testing, and BSL’s unit-
testing framework is especially tuned for novice programmers. One day you will
switch to some other programming language; one of your first tasks will be to
figure out its unit-testing framework.

3.6 Designing World Programs

While the previous chapter introduces the 2htdp/universe library in an ad hoc
way, this section demonstrates how the design recipe also helps you create world
programs systematically. It starts with a brief summary of the 2htdp/universe
library based on data definitions and function signatures. Then it spells out the
design recipe for world programs.

The teachpack expects that a programmer develops a data definition that
represents the state of the world and a function render that knows how to create
an image for every possible state of the world. Depending on the needs of the
program, the programmer must then design functions that respond to clock ticks,
keystrokes, and mouse events. Finally, an interactive program may need to stop
when its current world belongs to a sub-class of states; end? recognizes these
final states. Figure 18 spells out this idea in a schematic and simplified way.

; WorldState: data that represents the state of the world (cw)

; WorldState -> Image

; when needed, big-bang obtains the image of the current
; state of the world by evaluating (render cw)

(define (render ws) ...)

; WorldState -> WorldState

; for each tick of the clock, big-bang obtains the next
; state of the world from (clock-tick-handler cw)
(define (clock-tick-handler cw) ...)

; WorldState String -> WorldState

; for each keystroke, big-bang obtains the next state

; from (keystroke-handler cw ke); ke represents the key
(define (keystroke-handler cw ke) ...)

WorldState Number Number String -> WorldState

for each mouse gesture, big-bang obtains the next state
from (mouse-event-handler cw x y me) where x and y are
the coordinates of the event and me is its description
define (mouse-event-handler cw x y me) ...)

P T T

; WorldState -> Boolean
; after each event, big-bang evaluates (end? cw)
(define (end? cw) ...)

Figure 18: The wish list for designing world programs

Assuming that you have a rudimentary understanding of the workings of
big-bang, you can focus on the truly important problem of designing world
programs. Let’s construct a concrete example for the following design recipe:

Sample Problem Design a program that moves a car from left to
right on the world canvas, three pixels per clock tick.

For this problem statement, it is easy to imagine scenes for the domain:

e

In this book, we often refer to the domain of an interactive big-bang program as
a “world,” and we speak of designing “world programs.”

The design recipe for world programs, like the one for functions, is a tool for
systematically moving from a problem statement to a working program. It
consists of three big steps and one small one:

1. For all those properties of the world that remain the same over time and
are needed to render it as an Image, introduce constants. In BSL, we
specify such constants via definitions. For the purpose of world programs,
we distinguish between two kinds of constants:

(a) “Physical” constants describe general attributes of objects in the
world, such as the speed or velocity of an object, its color, its height,
its width, its radius, and so forth. Of course these constants don’t
really refer to physical facts, but many are analogous to physical
aspects of the real world.

In the context of our sample problem, the radius of the car’s wheels
and the distance between the wheels are such “physical” constants:

(define WIDTH-OF-WORLD 200)

(define WHEEL-RADIUS 5)
(define WHEEL-DISTANCE (* WHEEL-RADIUS 5))

Note how the second constant is computed from the first.

(b) Graphical constants are images of objects in the world. The program
composes them into images that represent the complete state of the
world.

We suggest you experiment in DrRacket’s interactions area to develop such graphical constants.

Here are graphical constants for wheel images of our sample car:

(define WHEEL

(circle WHEEL-RADIUS "solid" "black"))
(define SPACE

(rectangle .. WHEEL-RADIUS .. "white"))
(define BOTH-WHEELS

(beside WHEEL SPACE WHEEL))

Graphical constants are usually computed, and the computations
tend to involve physical constants and other images.

It is good practice to annotate constant definitions with a comment that
explains what they mean.

2. Those properties that change over time—in reaction to clock ticks,
keystrokes, or mouse actions—give rise to the current state of the world.
Your task is to develop a data representation for all possible states of the
world. The development results in a data definition, which comes with a
comment that tells readers how to represent world information as data and
how to interpret data as information about the world.

Choose simple forms of data to represent the state of the world.

For the running example, it is the car’s distance from the left margin that
changes over time. While the distance to the right margin changes, too, it
is obvious that we need only one or the other to create an image. A
distance is measured in numbers, so the following is an adequate data
definition:

; A WorldState is a Number.

; interpretation the number of pixels between
; the left border of the scene and the car

An alternative is to count the number of clock ticks that have passed and to
use this number as the state of the world. We leave this design variant as
an exercise.

. Once you have a data representation for the state of the world, you need to
design a number of functions so that you can form a valid big-bang
expression.

To start with, you need a function that maps any given state into an image
so that big-bang can render the sequence of states as images:

; render

Next you need to decide which kind of events should change which
aspects of the world state. Depending on your decisions, you need to
design some or all of the following three functions:

; clock-tick-handler
; keystroke-handler
; mouse-event-handler

Finally, if the problem statement suggests that the program should stop if
the world has certain properties, you must design

; end?

For the generic signatures and purpose statements of these functions, see
figure 18. Adapt these generic purpose statements to the particular
problems you solve so that readers know what they compute.

In short, the desire to design an interactive program automatically creates
several initial entries for your wish list. Work them off one by one and you
get a complete world program.

Let’s work through this step for the sample program. While big-bang
dictates that we must design a rendering function, we still need to figure
out whether we want any event-handling functions. Since the car is

supposed to move from left to right, we definitely need a function that
deals with clock ticks. Thus, we get this wish list:

; WorldState -> Image
; places the image of the car x pixels from
; the left margin of the BACKGROUND image
(define(render x)

BACKGROUND)

; WorldState -> WorldState

; adds 3 to x to move the car right

(define(tock x)
X)

Note how we tailored the purpose statements to the problem at hand, with
an understanding of how big-bang will use these functions.

4. Finally, you need a main function. Unlike all other functions, a main
function for world programs doesn’t demand design or testing. Its sole
reason for existing is that you can launch your world program
conveniently from DrRacket’s interactions area.

The one decision you must make concerns main’s arguments. For our
sample problem, we opt for one argument: the initial state of the world.
Here we go:

; WorldState —> WorldState

; launches the program from some initial state
(define (main ws)
(big-bang ws
[on-tick tock]
[to—draw render]))

Hence, you can launch this interactive program with
> (main 13)

to watch the car start at 13 pixels from the left margin. It will stop when

you close big-bang’s window. Remember that big-bang returns the
current state of the world when the evaluation stops.

Naturally, you don’t have to use the name “WorldState” for the class of data
that represents the states of the world. Any name will do as long as you use it
consistently for the signatures of the event-handling functions. Also, you don’t
have to use the names tock, end?, or render. You may name these functions
whatever you like, as long as you use the same names when you write down the
clauses of the big-bang expression. Lastly, you may have noticed that you may
list the clauses of a big-bang expression in any order as long as you list the
initial state first.

Let’s now work through the rest of the program design process, using the
design recipe for functions and other design concepts spelled out so far.

Exercise 39. Good programmers ensure that an image such as CAR can be
enlarged or reduced via a single change to a constant definition. We started the
development of our car image with a single plain definition:

(define WHEEL-RADIUS 5)

Good programmers establish a single point of control for all aspects of their programs, not just the
graphical constants. Several chapters deal with this issue.

The definition of WHEEL-DISTANCE is based on the wheel’s radius. Hence,
changing WHEEL -RADIUS from 5 to 10 doubles the size of the car image. This kind
of program organization is dubbed single point of control, and good design
employs this idea as much as possible.

Develop your favorite image of an automobile so that WHEEL -RADIUS remains
the single point of control.

The next entry on the wish list is the clock tick handling function:

; WorldState -> WorldState

; moves the car by 3 pixels for every clock tick
(define (tock ws) ws)

Since the state of the world represents the distance between the left margin of the
canvas and the car, and since the car moves at three pixels per clock tick, a

concise purpose statement combines these two facts into one. This also makes it
easy to create examples and to define the function:

; WorldState -> WorldState
; moves the car by 3 pixels for every clock tick
; examples:
; given: 20, expect 23
; given: 78, expect 81
(define(tock ws)
(+ ws 3))

The last design step calls for confirmation that the examples work as
expected. So we click the RUN button and evaluate these expressions:

> (tock 20)
23
> (tock 78)
81

Since the results are as expected, the design of tock is finished.

Exercise 40. Formulate the examples as BSL tests, that is, using the check-
expect form. Introduce a mistake. Re-run the tests. 1

Our second entry on the wish list specifies a function that translates the state
of the world into an image:

; WorldState -> Image
; places the car into the BACKGROUND scene,
; according to the given world state

(define (render ws)
BACKGROUND)

To make examples for a rendering function, we suggest arranging a table like
the upper half of figure 19. It lists the given world states and the desired scenes.
For your first few rendering functions, you may wish to draw these images by
hand.

ws its image

50 | oe I
100 | oo |
150 | 0o |
200 | e |

WS an expression

50 (place-image CAR 50 Y-CAR BACKGROUND)
100 (place-image CAR 100 Y-CAR BACKGROUND)
150 (place-image CAR 150 Y-CAR BACKGROUND)

(

200 place—-image CAR 200 Y-CAR BACKGROUND)

Figure 19: Examples for a moving car program

Even though this kind of image table is intuitive and explains what the
running function is going to display—a moving car—it does not explain how the
function creates this result. To get from here to there, we recommend writing
down expressions like those in the lower half of figure 19 that create the images
in the table. The capitalized names refer to the obvious constants: the image of a
car, its fixed y-coordinate, and the background scene, which is currently empty.

This extended table suggests a pattern for the formula that goes into the body
of the render function:

; WorldState -> Image
; places the car into the BACKGROUND scene,
; according to the given world state

(define (render ws)
place-image CAR ws Y-CAR BACKGROUND))

And that is mostly all there is to designing a simple world program.

Exercise 41. Finish the sample problem and get the program to run. That is,
assuming that you have solved exercise 39, define the constants BACKGROUND and
Y-CAR. Then assemble all the function definitions, including their tests. When
your program runs to your satisfaction, add a tree to the scenery. We used

(define tree
(underlay/xy (circle 10 "solid" "green")
9 15
(rectangle 2 20 "solid" "brown")))

to create a tree-like shape. Also add a clause to the big-bang expression that
stops the animation when the car has disappeared on the right side.

After settling on an initial data representation for world states, a careful
programmer may have to revisit this fundamental design decision during the rest
of the design process. For example, the data definition for the sample problem
represents the car as a point. But (the image of) the car isn’t just a mathematical
point without width and height. Hence, the interpretation statement—the number
of pixels from the left margin—is an ambiguous statement. Does this statement
measure the distance between the left margin and the left end of the car? Its
center point? Or even its right end? We ignored this issue here and leave it to
BSL’s image primitives to make the decision for us. If you don’t like the result,
revisit the data definition above and modify it or its interpretation statement to
suit your taste.

Exercise 42. Modify the interpretation of the sample data definition so that a
state denotes the x-coordinate of the right-most edge of the car. 1

Exercise 43. Let’s work through the same problem statement with a time-
based data definition:

; An AnimationState is a Number.

; interpretation the number of clock ticks
; since the animation started

Like the original data definition, this one also equates the states of the world
with the class of numbers. Its interpretation, however, explains that the number
means something entirely different.

Design the functions tock and render. Then develop a big-bang expression
so that once again you get an animation of a car traveling from left to right
across the world’s canvas.

How do you think this program relates to animate from the Prologue?

Use the data definition to design a program that moves the car according to a
sine wave. (Don’t try to drive like that.)1

Dealing with mouse movements is occasionally tricky because they aren’t exactly what they seems to
be. For a first idea of why that is, read the note on “Mice and Characters” in the on-line version.

We end the section with an illustration of mouse event handling, which also
illustrates the advantages that a separation of view and model provide. Suppose
we wish to allow people to move the car through “hyperspace”:

Sample Problem Design a program that moves a car across the
world canvas, from left to right, at the rate of three pixels per
clock tick. If the mouse is clicked anywhere on the canvas, the
car is placed at the x-coordinate of that click.

The bold part is the expansion of the sample problem from above.

When we are confronted with a modified problem, we use the design process
to guide us to the necessary changes. If used properly, this process naturally
determines what we need to add to our existing program to cope with the
expansion of the problem statement. So here we go:

1. There are no new properties, meaning we do not need new constants.

2. The program is still concerned with just one property that changes over
time, the x-coordinate of the car. Hence, the data representation suffices.

3. The revised problem statement calls for a mouse-event handler, without
giving up on the clock-based movement of the car. Hence, we state an
appropriate wish:

; WorldState Number Number String -> WorldState
; places the car at x-mouse
; 1f the given me is "button-down"

(define (hyper x-position-of-car x-mouse y-mouse me)
X-position-of-car)

4. Lastly, we need to modify main to take care of mouse events. All this
requires is the addition of an on-mouse clause that defers to the new entry
on our wish list:

(define (main ws)
(big-bang ws
[on—-tick tock]
[on—mouse hyper]
[to—draw render]))

After all, the modified problem calls for dealing with mouse clicks and
everything else remains the same.

The rest is a mere matter of designing one more function, and for that we use the
design recipe for functions.

An entry on the wish list covers the first two steps of the design recipe for
functions. Hence, our next step is to develop some functional examples:

WorldState Number Number String -> WorldState
places the car at x-mouse

if the given me is "button-down"

given: 21 10 20 "enter"

wanted: 21

given: 42 10 20 "button-down"
wanted: 10

given: 42 10 20 "move"
wanted: 42

A~ N= N= N= N= N= N= N= N= N=

define (hyper x-position-of-car Xx-mouse y-mouse me)
X-position-of-car)

The examples say that if the string argument is equal to "button-down", the
function returns x-mouse; otherwise it returns x-position-of-car.

Exercise 44. Formulate the examples as BSL tests. Click RUN and watch
them fail. s

To complete the function definition, we must appeal to your fond memories
from the Prologue, specifically memories about the conditional form. Using
cond, hyper is a two-line definition:

; WorldState Number Number String -> WorldState
; places the car at x-mouse
; 1f the given me is "button-down"
(define (hyper x-position-of—-car x—-mouse y-mouse me)
(cond
[(string=? "button-down" me) x-mouse]
[else x—-position-of-car]))

In the next chapter, we explain designing with cond in detail.

If you solved exercise 44, rerun the program and watch all tests succeed.
Assuming the tests do succeed, evaluate

(main 1)

in DrRacket’s interactions area and transport your car through hyperspace.

You may wonder why this program modification is so straightforward. There
are really two reasons. First, this book and its software strictly separate the data
that a program tracks—the model—and the image that it shows—the view. In
particular, functions that deal with events have nothing to do with how the state
is rendered. If we wish to modify how a state is rendered, we can focus on the
function specified in a to-draw clause. Second, the design recipes for programs
and functions organize programs in the right way. If anything changes in a
problem statement, following the design recipe a second time naturally points
out where the original problem solution has to change. While this may look
obvious for the simple kind of problems we are dealing with now, it is critical
for the kind of problems that programmers encounter in the real world.

3.7 Virtual Pet Worlds

This exercise section introduces the first two elements of a virtual pet game. It
starts with just a display of a cat that keeps walking across the canvas. Of course,
all the walking makes the cat unhappy and its unhappiness shows. As with all
pets, you can try petting, which helps some, or you can try feeding, which helps
a lot more.

So let’s start with an image of our favorite cat:

(define catl

Copy the cat image and paste it into DrRacket, then give the image a name with
define, just like above.

Exercise 45. Design a “virtual cat” world program that continuously moves
the cat from left to right. Let’s call it cat-prog and let’s assume it consumes the
starting position of the cat. Furthermore, make the cat move three pixels per
clock tick. Whenever the cat disappears on the right, it reappears on the left. You
may wish to read up on the modulo function.

Exercise 46. Improve the cat animation with a slightly different image:

(define cat?

Adjust the rendering function from exercise 45 so that it uses one cat image or
the other based on whether the x-coordinate is odd. Read up on odd? in the

HelpDesk, and use a cond expression to select cat images. 1

Exercise 47. Design a world program that maintains and displays a
“happiness gauge.” Let’s call it gauge-prog, and let’s agree that the program
consumes the maximum level of happiness. The gauge display starts with the
maximum score, and with each clock tick, happiness decreases by -0.1; it never
falls below 0, the minimum happiness score. Every time the down arrow key is
pressed, happiness increases by 1/5; every time the up arrow is pressed,
happiness jumps by 1/3.

To show the level of happiness, we use a scene with a solid, red rectangle
with a black frame. For a happiness level of 0, the red bar should be gone; for
the maximum happiness level of 100, the bar should go all the way across the
scene.

Note When you know enough, we will explain how to combine the gauge
program with the solution of exercise 45. Then we will be able to help the cat
because as long as you ignore it, it becomes less happy. If you pet the cat, it
becomes happier. If you feed the cat, it becomes much, much happier. So you
can see why you want to know a lot more about designing world programs than
these first three chapters can tell you. 1

4 Intervals, Enumerations, and Itemizations

At the moment, you have four choices to represent information as data: numbers,
strings, images, and Boolean values. For many problems this is enough, but there
are many more for which these four collections of data in BSL (or other
programming languages) don’t suffice. Actual designers need additional ways of
representing information as data.

At a minimum, good programmers must learn to design programs with
restrictions on these built-in collections. One way to restrict is to enumerate a
bunch of elements from a collection and to say that these are the only ones that
are going to be used for some problem. Enumerating elements works only when
there is a finite number of them. To accommodate collections with “infinitely”
many elements, we introduce intervals, which are collections of elements that
satisfy a specific property.

Infinite may just mean “so large that enumerating the elements is entirely impractical.”
Ly J g g y 1mp

Defining enumerations and intervals means distinguishing among different
kinds of elements. To distinguish in code requires conditional functions, that is,
functions that choose different ways of computing results depending on the
value of some argument. Both “Many Ways to Compute” and chapter 1.6
illustrate with examples of how to write such functions. Neither section uses
design, however. Both just present some new construct in your favorite
programming language (that’s BSL), and offer some examples on how to use it.

In this chapter, we discuss a general design for enumerations and intervals,
new forms of data descriptions. We start with a second look at the cond
expression. Then we go through three different kinds of data descriptions:
enumerations, intervals, and itemizations. An enumeration lists every single
piece of data that belongs to it, while an interval specifies a range of data. The
last one, itemizations, mixes the first two, specifying ranges in one clause of its
definition and specific pieces of data in another. The chapter ends with the
general design strategy for such situations.

4.1 Programming with Conditionals

Recall the brief introduction to conditional expressions in the Prologue. Since
cond is the most complicated expression form in this book, let’s take a close look
at its general shape:

(cond
[ConditionExpressionl ResultExpressionl]
[ConditionExpression2 ResultExpressionZ2]

[ConditionExpressionN ResultExpressionN])

Brackets make cond lines stand out. It is fine to use (..) in place of [...].

A cond expression starts with (cond, its keyword, and ends in). Following the
keyword, a programmer writes as many cond lines as needed; each cond line
consists of two expressions, enclosed in opening and closing brackets: [and].
A cond line is also known as a cond clause.
Here is a function definition that uses a conditional expression:

(define (next traffic-light-state)
(cond
[(string=? "red" traffic-light-state) '"green"]
[(string=? "green" traffic-light-state) "yellow"]
[(string=? "yellow" traffic-light-state) "red"]))

Like the mathematical example in the Prologue, this example illustrates the
convenience of using cond expressions. In many problem contexts, a function
must distinguish several different situations. With a cond expression, you can
use one line per possibility and thus remind the reader of the code for the
different situations from the problem statement.

A note on pragmatics: Contrast cond expressions with if expressions from
chapter 1.6. The latter distinguish one situation from all others. As such, if
expressions are much less suited for multi-situation contexts; they are best used
when all we wish to say is “one or the other.” We therefore always use cond for
situations when we wish to remind the reader of our code that some distinct
situations come directly from data definitions. For other pieces of code, we use

whatever construct is most convenient.

When the conditions get too complex in a cond expression, you occasionally
wish to say something like “in all other cases.” For these kinds of problems,
cond expressions permit the use of the else keyword for the very last cond line:

(cond
[ConditionExpressionl ResultExpressionl]
[ConditionExpression2 ResultExpressionZ2]

[else DefaultResultExpression])

If you make the mistake of using else in some other cond line, BSL in DrRacket
signals an error:

> (cond
[(> x 0) 10]
[else 20]
[(< x 10) 30])
cond:found an else clause that isn't the last clause in its con
d
expression

That is, BSL rejects grammatically incorrect phrases because it makes no sense
to figure out what such a phrase might mean.

Imagine designing a function that, as part of a game-playing program,
computes some award at the end of the game. Here is its header:

; A PositiveNumber is a Number greater than/equal to 0.

; PositiveNumber -> String
; computes the reward level from the given score s

And here are two variants for a side-by-side comparison:

(define (reward s)
(cond
[(<= 0 s 10)
"bronze"]
[(and (< 10 s)
(<= s 20))

"silver"]
[(< 20 s)
"gold"]))

(define (reward s)
(cond
[(<= 0 s 10)
"bronze"]
[(and (< 10 s)
(<= s 20))

"silver"]
[else
"gold"]))

The variant on the left uses a cond with three full-fledged conditions; on the
right, the function comes with an else clause. To formulate the last condition for
the function on the left, you must calculate that (< 20 s) holds because

* s is in PositiveNumber

* (<= 0 s 10) is #false

* (and (< 10 s) (<= s 20)) evaluates to #false as well.

While the calculation looks simple in this case, it is easy to make small mistakes
and to introduce bugs into your program. It is therefore better to formulate the
function definition as shown on the right, if you know that you want the exact
opposite—called the complement—of all previous conditions in a cond.

4.2 Computing Conditionally

From reading the “Many Ways to Compute” and chapter 1.6, you roughly know
how DrRacket evaluates conditional expressions. Let’s go over the idea a bit
more precisely for cond expressions. Take another look at this definition:

(define (reward s)
(cond
[(<= 0 s 10) "bronze"]
[(and (< 10 s) (<= s 20)) "silver"]
[else "gold"]))

This function consumes a numeric score—a positive number—and produces a
color.

Just looking at the cond expression, you cannot predict which of the three
cond clauses is going to be used. And that is the point of a function. The function
deals with many different inputs, for example, 2, 3, 7, 18, 29. For each of these
inputs, it may have to proceed in a different manner. Differentiating among the
varying classes of inputs is the purpose of the cond expression.

Take, for example

(reward 3)

You know that DrRacket replaces function applications with the function’s body
after substituting the argument for the parameter. Hence,

(reward 3) ; say ''equals''

(cond
[(<= 0 3 10) "bronze"]
[(and (< 10 3) (<= 3 20)) "silver"]
[else "gold"])

At this point, DrRacket evaluates one condition at a time. For the first one to
evaluate to #true, it continues with the result expression:

(reward 3)

[(<= 0 3 10) "bronze"]
[(and (< 10 3) (<= 3 20)) "silver"]
[else "gold"])

(cond
[#true "bronze"]
[(and (< 10 3) (<= 3 20)) "silver"]
[else "gold"])

"bronze"

Here the first condition holds because 3 is between 6 and 10.
Here is a second example:

(reward 21)

z;ond
[(<= 0 21 10) "bronze"]
[(and (< 10 21) (<= 21 20)) "silver"]
[else "gold"])

(cond
[#false "bronze"]
[(and (< 10 21) (<= 21 20)) "silver"]
[else "gold"])

(cond
[(and (< 10 21) (<= 21 20)) "silver"]
[else "gold"])

Note how the first condition evaluated to #false this time, and as mentioned in
“Many Ways to Compute” the entire cond clause is dropped. The rest of the
calculation proceeds as expected:

(cond
[(and (< 10 21) (<= 21 20)) "silver"]
[else "gold"])

[(and #true (<= 21 20)) "silver"]
[else "gold"])

[(and #true #false) "silver"]
[else "gold"])

(cond
[#false '"silver"]
[else "gold"])

(cond
[else "gold"])
et llgoldll

Like the first condition, the second one also evaluates to #false and thus the
calculation proceeds to the third cond line. The else tells DrRacket to replace
the entire cond expression with the answer from this clause.

Exercise 48. Enter the definition of reward followed by (reward 18) into
the definitions area of DrRacket and use the stepper to find out how DrRacket
evaluates applications of the function.

Exercise 49. A cond expression is really just an expression and may
therefore show up in the middle of another expression:

(- 200 (cond [(> vy 200) 0] [else vy]))

Use the stepper to evaluate the expression for y as 100 and 216.

Nesting cond expressions can eliminate common expressions. Consider the
function for launching a rocket, repeated in figure 20. Both branches of the cond
expression have the same shape except as indicated with ...:

(place-image ROCKET X .. MTSCN)

(define WIDTH 100)
(define HEIGHT 60)
(define MTSCN (empty—scene WIDTH HEIGHT))

(define ROCKET)
(define ROCKET-CENTER-TO-TOP
(- HEIGHT (/ (image-height ROCKET) 2)))

(define (create-rocket—-scene.v5 h)
(cond
[(<= h ROCKET-CENTER-TO-TOP)
(place-image ROCKET 50 h MTSCN)]
[(> h ROCKET-CENTER-TO-TOP)
(place—-image ROCKET 50 ROCKET-CENTER-TO-TOP MTSCN)]))

Figure 20: Recall from “One Program, Many Definitions”

Reformulate create-rocket-scene.v5 to use a nested expression; the
resulting function mentions place-image only once. 1

4.3 Enumerations

Not all strings represent mouse events. If you looked in HelpDesk when the last
section introduced the on-mouse clause for big-bang, you found out that only six
strings are used to notify programs of mouse events:

; A MouseEvt is one of these Strings:

; -- "button-down"
; -- "button-up"

; -- "drag"

; -- "move"

; -- "enter"

; -- "leave"

The interpretation of these strings is quite obvious. One of the first two strings
shows up when the computer user clicks the mouse button or releases it. In
contrast, the third and fourth are about moving the mouse and possibly holding
down the mouse button at the same time. Finally, the last two strings represent
the events of a mouse moving over the edge of the canvas: either going into the
canvas from the outside or exiting the canvas.

More importantly, the data definition for representing mouse events as
strings looks quite different from the data definitions we have seen so far. It is
called an enumeration, and it is a data representation in which every possibility
is listed. It should not come as a surprise that enumerations are common. Here is
a simple one:

; A TrdfficLight is one of the following Strings:

’. - Ilredll
; -- '""green"
; -- "yellow"

; interpretation the three strings represent the three
; possible states that a traffic light may assume

It is a simplistic representation of the states that a traffic light can take on.
Unlike others, this data definition also uses a slightly different phrase to explain
what the term TrafficLight means, but this is an inessential difference.

We call it “simplistic” because it does not include the “off” state, the “blinking red” state, or the
“blinking yellow” state.

Programming with enumerations is mostly straightforward. When a
function’s input is a class of data whose description spells out its elements on a
case-by-case basis, the function should distinguish just those cases and compute
the result on a percase basis. For example, if you wanted to define a function that
computes the next state of a traffic light, given the current state as an element of
TrafficLight, you would come up with a definition like this one:

; TrafficLight -> TrafficLight
; yields the next state given current state s
(check-expect (traffic-light-next "red") "green")
(define (traffic-light-next s)
(cond
[(string=? "red" s) '"green"]

[(string=? '"green" s) "yellow"]
[(string=? "yellow" s) "red"]))

Because the data definition for TrafficLight consists of three distinct elements,
the traffic-1light-next function naturally distinguishes between three different
cases. For each case, the result expression is just another string, the one that
corresponds to the next case.

Exercise 50. If you copy and paste the above function definition into the
definitions area of DrRacket and click RUN, DrRacket highlights two of the
three cond lines. This coloring tells you that your test cases do not cover the full
conditional. Add enough tests to make DrRacket happy. 1

Exercise 51. Design a big-bang program that simulates a traffic light for a
given duration. The program renders the state of a traffic light as a solid circle of
the appropriate color, and it changes state on every clock tick. What is the most
appropriate initial state? Ask your engineering friends. 1

The main idea of an enumeration is that it defines a collection of data as a
finite number of pieces of data. Each item explicitly spells out which piece of
data belongs to the class of data that we are defining. Usually, the piece of data
is just shown as is; on some occasions, the item of an enumeration is an English
sentence that describes a finite number of elements of pieces of data with a

single phrase.
Here is an important example:

; A 1String is a String of length 1,
; including

;7 -- "\\" (the backslash),
; -- " " (the space bar),
;o-- "\t" (tab),

; -- "\r" (return), and

; -- "\b" (backspace).

; interpretation represents keys on the keyboard

You know that such a data definition is proper if you can describe all of its
elements with a BSL test. In the case of 1String, you can find out whether some
string s belongs to the collection with

(= (string-length s) 1)

An alternative way to check that you have succeeded is to enumerate all the
members of the collection of data that you wish to describe:

; A 1String is one of:

;o= "q"
;oo-"w
;o-- e
;-
;o-- "\t"
;o-- "\r"
; -- "\b"

If you look at your keyboard, you find «, 1, and similar labels. Our chosen
programming language, BSL, uses its own data definition to represent this
information. Here is an excerpt:

; A KeyEvent is one of:
; -- 1String

; -- "left"
; -- "right"

poTo up

You know where to find the full definition.

The first item in this enumeration describes the same bunch of strings that
1String describes. The clauses that follow enumerate strings for special key
events, such as pressing one of the four arrow keys or releasing a key.

At this point, we can actually design a key-event handler systematically.
Here is a sketch:

; WorldState KeyEvent -> ..
(define (handle-key-events w ke)
(cond
[(= (string-length ke) 1) ..]
[(string=? "left" ke) ..]
[(string=? "right" ke) ..]
[(string=? "up" ke) ..]
[(string=? "down" ke) ..]

)

This event-handling function uses a cond expression, and for each line in the
enumeration of the data definition, there is one cond line. The condition in the
first cond line identifies the KeyEvents identified in the first line of the
enumeration, the second cond clause corresponds to the second data enumeration
line, and so on.

When programs rely on data definitions that come with the chosen
programming language (such as BSL) or its libraries (such as the 2htdp/universe
library), it is common that they use only a part of the enumeration. To illustrate
this point, let us look at a representative problem.

Sample Problem Design a key-event handler that moves a red
dot left or right on a horizontal line in response to pressing the
left and right arrow keys.

Figure 21 presents two solutions to this problem. The function on the left is
organized according to the basic idea of using one cond clause per line in the
data definition of the input, KeyEvent. In contrast, the right-hand side displays a
version that uses the three essential lines: two for the keys that matter and one
for everything else. The reordering is appropriate because only two of the cond-
lines are relevant, and they can be cleanly separated from other lines. Naturally,
this kind of rearrangement is done after the function is designed properly.

; A Position is a Number.
; interpretation distance between the left margin and the ball

; Position KeyEvent —> Position
; computes the next location of the ball

(check-expect (keh 13 "left") 8)
(check-expect (keh 13 "right") 18)
(check-expect (keh 13 "a") 13)

(define (keh p k)

(cond (define (keh p k)

[(= (string-length k) 1) (cond

[?ltring:? "left" k) [ift;igﬁT? "left" k)
[E;tiii)g]:? "right" k) [Eit;i?ﬁ? "right" k)
[éisz ;ii) [else pl))

Figure 21: Conditional functions and special enumerations

4.4 Intervals
Imagine yourself responding to the following sample design task:

Sample Problem Design a program that simulates the descent of
a UFO.

After a bit of thinking, you could come up with something like figure 22. Stop!
Study the definitions and replace the dots before you read on.

; A WorldState is a Number.
; interpretation number of pixels between the top and the UFO

(define WIDTH 300) ; distances in terms of pixels
(define HEIGHT 100)

(define CLOSE (/ HEIGHT 3))

(define MTSCN (empty-scene WIDTH HEIGHT))

(define UFO (overlay (circle 10 "solid" "green") ...))

; WorldState —> WorldState
(define (main yO0)
(big-bang yO0
[on-tick nxt]
[to—draw render]))

; WorldState —> WorldState
; computes next location of UFO
(check-expect (nxt 11) 14)
(define (nxt vy)

(+ vy 3))

; WorldState —-> Image
; places UFO at given height into the center of MTSCN

(check-expect (render 11) (place-image UFO ... 11 MTSCN))
(define (render vy)
(place-image UFO ... y MTSCN))

Figure 22: UFO, descending

Before you release this “game” program, however, you may wish to add the
display of the status line to the canvas:

Sample Problem Add a status line. It says “descending” when
the UFQO’s height is above one third of the height of the canvas. It
switches to "closing in" below that. And finally, when the UFO
has reached the bottom of the canvas, the status notifies the player

that the UFO has “landed.”

You are free to use appropriate colors for the status line.

In this case, we don’t have a finite enumeration of distinct elements or
distinct sub-classes of data. After all, conceptually, the interval between 6 and
HEIGHT (for some number greater than 0) contains an infinite number of numbers
and a large number of integers. Therefore we use intervals to superimpose some
organization on the generic data definition, which just uses “numbers” to
describe the class of coordinates.

An interval is a description of a class of numbers via boundaries. The
simplest interval has two boundaries: left and right. If the left boundary is to be
included in the interval, we say it is closed on the left. Similarly, a right-closed
interval includes its right boundary. Finally, if an interval does not include a
boundary, it is said to be open at that boundary.

Pictures of, and notations for, intervals use brackets for closed boundaries
and parentheses for open boundaries. Here are four such intervals:

* [3,5] is a closed interval:

L rr 311 1 | | R
N D S N
0O I 2 3 4 6 7 8 9 1011l

* (3,5] is a left-open interval:
1 1 ¢ 17 1 1 1 1 | | s
<1 11T 17 1 1 11
0O I 2 3 4 6 7 8 9 1011

* [3,5) is a right-open interval:
1 rr N [[1 1 [| s
72 1 1 11
O 1 2 3 45 6 7 8 9 101l

 and (3,5) is an open interval:

(A W A I
<7 0 T T T 1
3 5 6 7 8 9 101l

A J

Exercise 52. Which integers are contained in the four intervals above? 1
The interval concept helps us formulate a data definition that captures the
revised problem statement better than the “numbers”-based definition:

; A WorldState falls into one of three intervals:
; -- between 0 and CLOSE

; -- between CLOSE and HEIGHT

; -- below HEIGHT

Specifically, there are three intervals, which we may picture as follows:

CLOSE

HEIGHT]

What you see is the standard number line, turned vertical and broken into
intervals. Each interval starts with an angular downward-pointing bracket ()
and ends with an upward-pointing bracket (). The picture identifies three
intervals in this manner:

* the upper interval goes from © to CLOSE;

 the middle one starts at CLOSE and reaches HEIGHT; and

* the lower, invisible interval is just a single line at HEIGHT.

On a plain number line, the last interval starts at HEIGHT and goes on forever.

Visualizing the data definition in this manner helps with the design of
functions in two ways. First, it immediately suggests how to pick examples.
Clearly we want the function to work inside of all the intervals, and we want the
function to work properly at the ends of each interval. Second, the image tells us
that we need to formulate a condition that determines whether or not some
“point” is within one of the intervals.

Putting the two together also raises a question, namely, how exactly the
function deals with the end points. In the context of our example, two points on
the number line belong to two intervals: CLOSE belongs to both the upper interval
and the middle one, while HEIGHT seems to fall into both the middle one and the
lowest one. Such overlaps usually cause problems for programs, and they ought
to be avoided.

BSL functions avoid them naturally due to the way cond expressions are
evaluated. Consider this natural organization of a function that consumes
elements of WorldState:

; WorldState -> WorldState
(define (f y)
(cond
[(<= @ y CLOSE) ..]

[(<= CLOSE y HEIGHT) ..]
[(>= y HEIGHT) ..]))

The three cond lines correspond to the three intervals. Each condition identifies
those values of y that are in between the limits of the intervals. Due to the way
cond lines are checked one by one, however, a y value of cLOSE makes BSL pick
the first cond line, and a y value of HEIGHT triggers the evaluation of the second
ResultExpression.

If we wanted to make this choice obvious and immediate for every reader of
our code, we would use different conditions:

; WorldState -> WorldState
(define (g vy)
(cond
[(<= @ y CLOSE) ..]
[(and (< CLOSE y) (<= y HEIGHT)) ..]

[(> y HEIGHT) ..]))

Note how the second cond line uses and to combine a strictly-less check with a
less-than-or-equal check instead of f’s <= with three arguments.

Given all that, we can complete the definition of the function that adds the
requested status line to our UFO animation; see figure 23 for the complete
definition. The function uses a cond expression to distinguish the three intervals.
In each cond clause, the ResultExpression uses render (from figure 22) to
create the image with the descending UFO and then places an appropriate text at
position (10,10) with place-image.

; WorldState -> Image
; adds a status line to the scene created by render

(check-expect (render/status 10)
(place-image (text "descending" 11 "green")
10 10
(render 10)))

(define (render/status vy)
(cond
[(<= 0 y CLOSE)
(place-image (text "descending" 11 "green")
10 10
(render vy))]
[(and (< CLOSE y) (<= y HEIGHT))
(place-image (text "closing in" 11 "orange")
10 10
(render vy))]

[(> y HEIGHT)
(place-image (text "landed" 11 "red")
10 10
(render y))1))

Figure 23: Rendering with a status line

To run this version, you need to change main from figure 22 a bit:

: WorldState —> WorldState
(define (main vyO0)
(big-bang vyO0
[eéh—E1Ek nXE]
[to—draw render/status]))

One aspect of this function definition might disturb you, and to clarify why,
let’s refine the sample problem from above just a tiny bit:

Sample Problem Add a status line, positioned at (20,20), that
says “descending” when the UFQO’s height is above one third of
the height of the canvas. - - -

This could be the response of a client who has watched your animation for a first
time.

At this point, you have no choice but to change the function render/status
at six distinct places because you have three copies of one external piece of
information: the location of the status line. To avoid multiple changes for a
single element, programmers try to avoid copies. You have two choices to fix
this problem. The first one is to use constant definitions, which you might recall
from early chapters. The second one is to think of the cond expression as an
expression that may appear anywhere in a function, including in the middle of
some other expression; see figure 24 and compare with figure 23. In this revised
definition of render/status, the cond expression is the first argument to place-
image. As you can see, its result is always a text image that is placed at position
(20,20) into the image created by (render vy).

; WorldState -> Image
; adds a status line to the scene created by render

(check-expect (render/status 42)
(place-image (text "closing in" 11 "orange")
20 20
(render 42)))

(define (render/status vy)
(place—image
(cond
[(<= 0 y CLOSE)
text "descending" 11 "green")]
and (< CLOSE y) (<= y HEIGHT))
text "closing in" 11 "orange")]

(
[(
(
(

[(> y HEIGHT)
(text "landed" 11 "red")])
20 20

(render y)))

Figure 24: Rendering with a status line, revised

4.5 Itemizations

An interval distinguishes different sub-classes of numbers, which, in principle, is
an infinitely large class. An enumeration spells out item for item the useful
elements of an existing class of data. Some data definitions need to include
elements from both. They use itemizations, which generalize intervals and
enumerations. They allow the combination of any already-defined data classes
with each other and with individual pieces of data.

Consider the following example, a rewrite of an important data definition
from chapter 4.3:

; A KeyEvent is one of:

; -- 1String
; -- "left"
; -~ "right"
; -~ "up"

In this case, the KeyEvent data definition refers to the 1String data definition.
Since functions that deal with KeyEvents often deal with 1Strings separately
from the rest and do so with auxiliary functions, we now have a convenient way
to express signatures for these functions, too.

The description of the string->number primitive employs the idea of an
itemization in a sophisticated way. Its signature is

; String -> NorF
; converts the given string into a number;

; produces #false if impossible
(define (string->number s) (.. s ..))

meaning that the result signature names a simple class of data:

; An NorF is one of:
; -- #false
; -- a Number

This itemization combines one piece of data (#false) with a large, and distinct,
class of data (Number).

Now imagine a function that consumes the result of string->number and
adds 3, dealing with #false as if it were 0:

; NorF -> Number
; adds 3 to the given number; 3 otherwise
(check-expect (add3 #false) 3)
(check-expect (add3 0.12) 3.12)
(define (add3 x)

(cond

[(false? x) 3]
[else (+ x 3)]))

As above, the function’s body consists of a cond expression with as many
clauses as there are items in the enumeration of the data definition. The first
cond clause recognizes when the function is applied to #false; the
corresponding result is 3 as requested. The second clause is about numbers and
adds 3 as required.

Let’s study a somewhat more purposeful design task:

Sample Problem Design a program that launches a rocket when
the user of your program presses the space bar. The program first
displays the rocket sitting at the bottom of the canvas. Once
launched, it moves upward at three pixels per clock tick.

This revised version suggests a representation with two classes of states:

; An LR (short for launching rocket) is one of:
; -- "resting"
; -- NonnegativeNumber

; interpretation "resting" represents a grounded rocket
; a number denotes the height of a rocket in flight

While the interpretation of "resting" is obvious, the interpretation of numbers
is ambiguous in its notion of height:

1. the word “height” could refer to the distance between the ground and the

rocket’s point of reference, say, its center; or

2. it could mean the distance between the top of the canvas and the reference
point.

Either one works fine. The second one uses the conventional computer meaning
of the word “height.” It is thus slightly more convenient for functions that
translate the state of the world into an image, and we therefore choose to
interpret the number in that spirit.

To drive home this choice, exercise 57 below asks you to solve the exercises
of this section using the first interpretation of height.

Exercise 53. The design recipe for world programs demands that you
translate information into data and vice versa to ensure a complete understanding
of the data definition. It’s best to draw some world scenarios and to represent
them with data and, conversely, to pick some data examples and to draw pictures
that match them. Do so for the LR definition, including at least HEIGHT and 0 as
examples. 1

In reality, rocket launches come with countdowns:

Sample Problem Design a program that launches a rocket when
the user presses the space bar. At that point, the simulation starts
a countdown for three ticks, before it displays the scenery of a
rising rocket. The rocket should move upward at a rate of three
pixels per clock tick.

Following the program design recipe, we first collect constants:

(define HEIGHT 300) ; distances in pixels
(define WIDTH 100)

(define YDELTA 3)

(define BACKG (empty-scene WIDTH HEIGHT))
(define ROCKET (rectangle 5 30 "solid" "red"))

(define CENTER (/ (image-height ROCKET) 2))

While wIDTH and HEIGHT describe the dimensions of the canvas and the
background scene, YDELTA describes how fast the rocket moves along the y-axis,
as specified in the problem statement. The CENTER constant is the computed
center of the rocket.

Next we turn to the development of a data definition. This revision of the
problem clearly calls for three distinct sub-classes of states:

; An LRCD (for launching rocket countdown) is one of:
; -- "resting"

; -- a Number between -3 and -1

; -- a NonnegativeNumber

; interpretation a grounded rocket, in countdown mode,

; a number denotes the number of pixels between the
; top of the canvas and the rocket (its height)

The second, new sub-class of data—three negative numbers—represents the
world after the user pressed the space bar and before the rocket lifts off.

At this point, we write down our wish list for a function that renders states as
images and for any event-handling functions that we may need:

; LRCD -> Image

; renders the state as a resting or flying rocket
(define (show x)

BACKG)

; LRCD KeyEvent -> LRCD

; starts the countdown when space bar is pressed,
; 1f the rocket is still resting

(define (launch x ke)

X)

; LRCD -> LRCD

; raises the rocket by YDELTA,
; if it is moving already
(define (fly x)

X)

Remember that the design recipe for world programs dictates these signatures,
though the choice of names for the data collection and the event handlers are
ours. Also, we have specialized the purpose statements to fit our problem

statement.
From here, we use the design recipe for functions to create complete
definitions for all three of them, starting with examples for the first one:

(check—-expect
(show "resting")
(place—image ROCKET 10 HEIGHT BACKG))

(check—-expect
(show —2)
(place—-image (text "-2" 20 "red")
10 (3/4 WIDTH)
(place—image ROCKET 10 HEIGHT BACKG)))

(check—-expect
(show 53)
(place—-image ROCKET 10 53 BACKG))

As before in this chapter, we make one test per sub-class in the data definition.
The first example shows the resting state, the second the middle of a countdown,
and the last one the rocket in flight. Furthermore, we express the expected values
as expressions that draw appropriate images. We used DrRacket’s interactions
area to create these images; what would you do?

A close look at the examples reveals that making examples also means
making choices. Nothing in the problem statement actually demands how
exactly the rocket is displayed before it is launched, but doing so is natural.
Similarly, nothing says to display a number during the countdown, yet it adds a
nice touch. Lastly, if you solved exercise 53 you also know that ® and HEIGHT are
special points for the third clause of the data definition.

In general, intervals deserve special attention when you make up examples,
that is, they deserve at least three kinds of examples: one from each end and
another one from inside. Since the second sub-class of LRCD is a (finite)
interval and the third one is a half-open interval, let’s take a look at their end
points:

* Clearly, (show -3) and (show -1) must produce images like the one for

(show -2). After all, the rocket still rests on the ground, even if the
countdown numbers differ.

* The case for (show HEIGHT) is different. According to our agreement, the
value HEIGHT represents the state when the rocket has just been launched.
Pictorially this means the rocket is still resting on the ground. Based on the
last test case above, here is the test case that expresses this insight:

(check-expect
(show HEIGHT)
(place-image ROCKET 10 HEIGHT BACKG))

Except that if you evaluate the “expected value” expression by itself in
DrRacket’s interactions area, you see that the rocket is halfway
underground. This shouldn’t be the case, of course, meaning that we need
to adjust this test case and the above:

(check-expect
(show HEIGHT)
(place-image ROCKET 10 (- HEIGHT CENTER) BACKG))

(check-expect
(show 53)
(place-image ROCKET 10 (- 53 CENTER) BACKG))

* Finally, determine the result you now expect from (show 0). It is a simple
but revealing exercise.

Following the precedents in this chapter, show uses a cond expression to deal
with the three clauses of the data definition:

(define (show x)
(cond
[(string? x) ..]
[(<= -3 x -1) ..]
[(>= x 0) ..]))

Each clause identifies the corresponding sub-class with a precise condition:
(string? x) picks the first sub-class, which consists of just one element, the
string "resting"; (<= -3 x -1) completely describes the second sub-class of

data; and (>= x 0) is a test for all non-negative numbers.

Exercise 54. Why is (string=? "resting" x) incorrect as the first
condition in show? Conversely, formulate a completely accurate condition, that
is, a Boolean expression that evaluates to #true precisely when x belongs to the
first sub-class of LRCD.1

Combining the examples and the above skeleton of the show function yields
a complete definition in a reasonably straightforward manner:

(define (show x)
(cond
[(string? x)
(place—-image ROCKET 10 (- HEIGHT CENTER) BACKG)]
[(<= -3 x -1)
(place—-image (text (number—->string x) 20 "red")
10 (x 3/4 WIDTH)
(place—image ROCKET
10 (- HEIGHT CENTER)
BACKG))]
[(>= x 0)
(place—image ROCKET 10 (- x CENTER) BACKG)]))

Indeed, this way of defining functions is highly effective and is an essential
element of the full-fledged design approach in this book.

Exercise 55. Take another look at show. It contains three instances of an
expression with the approximate shape:

(place-image ROCKET 10 (- .. CENTER) BACKG)

This expression appears three times in the function: twice to draw a resting
rocket and once to draw a flying rocket. Define an auxiliary function that
performs this work and thus shorten show. Why is this a good idea? You may
wish to reread the Prologue. 1

Let’s move on to the second function, which deals with the key event to
launch the rocket. We have its header material, so we formulate examples as
tests:

(check-expect (launch "resting" " ") -3)

(check-expect (launch "resting" "a") "resting")
(check-expect (launch -3 " ") -3)
(check-expect (launch -1 " ") -1)
(check-expect (launch 33 " ") 33)
(check-expect (launch 33 "a") 33)

An inspection of these six examples shows that the first two are about the first
sub-class of LRCD, the third and fourth concern the countdown, and the last two
are about key events when the rocket is already in the air.

Since writing down the sketch of a cond expression worked well for the
design of the show function, we do it again:

(define (launch x ke)
(cond
[(string? x) ..]
[(<= -3 x -1) ..]
[(>= x 0) ..]))

Looking back at the examples suggests that nothing changes when the world is
in a state that is represented by the second or third sub-class of data. Meaning,
launch should produce x when this happens:

(define (launch x ke)
(cond
[(string? x) ..]
[(<= -3 x -1) X]
[(>= x 0) x]))

Finally, the first example identifies the exact case when the launch function
produces a new world state:

(define (launch x ke)
(cond
[(string? x) (if (string=? " " ke) -3 x)]
[(<= -3 x -1) X]
[(>= x 0) x]))

Specifically, when the state of the world is "resting" and the user presses the
space bar, the function starts the countdown with —3.
Copy the code into the definitions area of DrRacket and ensure that the

above definitions work. At that point, you may wish to add a function for
running the program:

; LRCD -> LRCD
(define (mainl s)
(big-bang s

[to-draw show]
[on-key launch]))

This function does not specify what to do when the clock ticks; after all, we
haven’t designed fly yet. Still, with main1 it is possible to run this incomplete
version of the program and to check that you can start the countdown. What
would you provide as the argument in a call to main1?

The design of f1ly—the clock-tick handler—proceeds just like the design of
the preceding two functions, and figure 25 displays the result of the design
process. Once again the key is to cover the space of possible input data with a
goodly bunch of examples, especially for the two intervals. These examples
ensure that the countdown and the transition from the countdown to the liftoff
work properly.

; LRCD -> LRCD
; raises the rocket by YDELTA if it is moving already

(check-expect (
(check-expect (fly -3) -2)
(check—-expect (fly -2) -1)
(check-expect (fly -1) HEIGHT)
(check—-expect (fly 10) (- 10 YDELTA))
(check-expect (fly 22) (- 22 YDELTA))

fly "resting") "resting")

(define (fly x)
(cond
[(string? x) x]
[(<= -3 x =1) (if (= x -1) HEIGHT (+ x 1))]
[(>= x 0) (- x YDELTA)]))

Figure 25: Launching a countdown and a liftoff

Exercise 56. Define main2 so that you can launch the rocket and watch it lift
off. Read up on the on-tick clause to determine the length of one tick and how
to change it.

If you watch the entire launch, you will notice that once the rocket reaches
the top something curious happens. Explain. Add a stop-when clause to main2
so that the simulation of the liftoff stops gracefully when the rocket is out of
sight.

The solution of exercise 56 yields a complete, working program, but one that
behaves a bit strangely. Experienced programmers tell you that using negative
numbers to represent the countdown phase is too “brittle.” The next chapter
introduces the means to provide a good data definition for this problem. Before
we go there, however, the next section spells out in detail how to design
programs that consume data described by itemizations.

Exercise 57. Recall that the word “height” forced us to choose one of two
possible interpretations. Now that you have solved the exercises in this section,
solve them again using the first interpretation of the word. Compare and contrast
the solutions. 1

4.6 Designing with Itemizations

Designing with Itemizations

What the preceding three sections have clarified is that the design of
functions can—and must—exploit the organization of the data definition.
Specifically, if a data definition singles out certain pieces of data or specifies
ranges of data, then the creation of examples and the organization of the function
reflect these cases and ranges.

In this section, we refine the design recipe of chapter 3.4 so that you can
proceed in a systematic manner when you encounter problems concerning
functions that consume itemizations, including enumerations and intervals. To
keep the explanation grounded, we illustrate the six design steps with the
following, somewhat simplistic, example:

Sample Problem The state of Tax Land has created a three-stage
sales tax to cope with its budget deficit. Inexpensive items, those
costing less than $1,000, are not taxed. Luxury items, with a price
of more than $10,000, are taxed at the rate of eight percent
(8.00%). Everything in between comes with a five percent
(5.00%) markup.

Design a function for a cash register that, given the price of an
item, computes the sales tax.

Keep this problem in mind as we revise the steps of the design recipe:

1. When the problem statement distinguishes different classes of input
information, you need carefully formulated data definitions.

A data definition must use distinct clauses for each sub-class of data or in
some cases just individual pieces of data. Each clause specifies a data
representation for a particular sub-class of information. The key is that
each sub-class of data is distinct from every other class, so that our
function can proceed by analyzing disjoint cases.

Our sample problem deals with prices and taxes, which are usually
positive numbers. It also clearly distinguishes three ranges:

; A Price falls into one of three intervals:

; --- 0 through 1000

; --- 1000 through 10000

; --- 10000 and above.

; interpretation the price of an item

Do you understand how these ranges relate to the original problem?

2. As far as the signature, purpose statement, and function header are
concerned, you proceed as before.

Here is the material for our running example:

; Price -> Number

; computes the amount of tax charged for p
(define (sales-tax p) 0)

Developers in the real world do not use plain numbers in the chosen programming language for
representing amounts of money. See intermezzo 4 for some problems with numbers.

3. For functional examples, however, it is imperative that you pick at least
one example from each sub-class in the data definition. Also, if a sub-class
is a finite range, be sure to pick examples from the boundaries of the range
and from its interior.

Since our sample data definition involves three distinct intervals, let’s pick
all boundary examples and one price from inside each interval and
determine the amount of tax for each: 0, 537, 1000, 1282, 10000, and
12017.

Stop! Try to calculate the tax for each of these prices.
Here is our first attempt, with rounded tax amounts:

0 537 1000 1282 10000 12017
0 0o 27 64 7?7?77 961

The question marks point out that the problem statement uses the vague
phrase “those costing less than $1,000” and “more than $10,000” to
specify the tax table. While a programmer may jump to the conclusion that

these words mean “strictly less” or “strictly more,” the lawmakers may
have meant to say “less than or equal to” or “more than or equal to,”
respectively. Being skeptical, we decide here that Tax Land legislators
always want more money to spend, so the tax rate for $1,000 is 5% and the
rate for $10,000 is 8%. A programmer at a tax company would have to ask
a tax-law specialist.

Now that we have figured out how the boundaries are to be interpreted in
the domain, we could refine the data definition. We trust you can do this
on your own.

Before we go, let’s turn some of the examples into test cases:

(check-expect (sales-tax 537) 0)
(check-expect (sales-tax 1000) (* 0.05 1000))
(check-expect (sales-tax 12017) (* 0.08 12017))

Take a close look. Instead of just writing down the expected result, we
write down how to compute the expected result. This makes it easier later
to formulate the function definition.

Stop! Write down the remaining test cases. Think about why you may
need more test cases than sub-classes in the data definition.

. The biggest novelty is the conditional template. In general,
the template mirrors the organization of sub-classes with a cond.

This slogan means two concrete things. First, the function’s body must be
a conditional expression with as many clauses as there are distinct sub-
classes in the data definition. If the data definition mentions three distinct
sub-classes of input data, you need three cond clauses; if it has seventeen
sub-classes, the cond expression contains seventeen clauses. Second, you
must formulate one condition expression per cond clause. Each expression
involves the function parameter and identifies one of the sub-classes of
data in the data definition:

(define (sales-tax p)
(cond
[(and (<= 0 p) (< p 1600)) ..]
[(and (<= 1000 p) (< p 10000)) ..]

[(>= p 16000) ..]))

5. When you have finished the template, you are ready to define the function.
Given that the function body already contains a schematic cond
expression, it is natural to start from the various cond lines. For each cond
line, you may assume that the input parameter meets the condition and so
you exploit the corresponding test cases. To formulate the corresponding
result expression, you write down the computation for this example as an
expression that involves the function parameter. Ignore all other possible
kinds of input data when you work on one line; the other cond clauses take
care of those.

(define (sales-tax p)
(cond
[(and (<= 0 p) (< p 1600)) O]
[(and (<= 1000 p) (< p 10000)) (* 0.05 p)]
[(>= p 16000) (* 0.08 p)]))

6. Finally, run the tests and ensure that they cover all cond clauses.

What do you do when one of your test cases fails? Review the end of
chapter 3.1 concerning test failures.

Exercise 58. Introduce constant definitions that separate the intervals for low
prices and luxury prices from the others so that the legislators in Tax Land can
easily raise the taxes even more. 1

4.7 Finite State Worlds

With the design knowledge in this chapter, you can develop a complete
simulation of American traffic lights. When such a light is green and it is time to
stop the traffic, the light turns yellow, and, after that, it turns red. When the light
is red and it is time to get the traffic going, the light simply switches to green.

The left-hand side of Figure 26 summarizes this description as a state
transition diagram. Such a diagram consists of states and arrows that connect
these states. Each state depicts a traffic light in one particular configuration: red,
yellow, or green. Each arrow shows how the world can change, from which state
it can transition to another state. Our sample diagram contains three arrows,
because there are three possible ways in which the traffic light can change.
Labels on the arrows indicate the reason for changes; a traffic light transitions
from one state to another as time passes.

Figure 26: How a traffic light functions

In many situations, state transition diagrams have only a finite number of
states and arrows. Computer scientists call such diagrams finite state machines
(FSM), also known as finite state automata (FSA). Despite their simplicity,
FSMs/FSAs play an important role in computer science.

To create a world program for an FSA, we must first pick a data
representation for the possible “states of the world,” which, according to chapter
3.6, represents those aspects of the world that may change in some ways as

opposed to those that remain the same. In the case of our traffic light, what
changes is the color of the light, that is, which bulb is turned on. The size of the
bulbs, their arrangement (horizontal or vertical), and other aspects don’t change.
Since there are only three states, we reuse the string-based data definition of
TrafficLight from above.

The right-hand side of figure 26 is a diagrammatic interpretation of the
TrafficLight data definition. Like the diagram in figure 26, it consists of three
states, arranged in such a way that it is easy to view each data element as a
representation of a concrete configuration. Also, the arrows are now labeled with
tick to suggest that our world program uses the passing of time as the trigger that
changes the state of the traffic light. If we wanted to simulate a manually
operated light, we might choose transitions based on keystrokes.

Now that we know how to represent the states of our world, how to go from
one to the next, and that the state changes at every tick of the clock, we can write
down the signature, a purpose statement, and a stub for the two functions we
must design:

; TrafficLight -> TrafficLight
; yields the next state, given current state cs
(define (tl-next cs) cs)

; TrafficLight -> Image
; renders the current state cs as an image

(define (tl-render current-state)
(empty-scene 90 30))

Preceding sections use the names render and next to name the functions that
translate a state of the world into an image and that deal with clock ticks. Here
we prefix these names with some syllable that suggests to which world the
functions belong. Because the specific functions have appeared before, we leave
them as exercises.

Exercise 59. Finish the design of a world program that simulates the traffic
light FSA. Here is the main function:

; TrafficLight -> TrafficLight
; Simulates a clock-based American traffic light

(define (traffic-light-simulation initial-state)
(big-bang initial-state
[to-draw tl-render]
[on-tick tl-next 1]))

The function’s argument is the initial state for the big-bang expression, which
tells DrRacket to redraw the state of the world with t1-render and to handle
clock ticks with t1-next. Also note that it informs the computer that the clock
should tick once per second.

Complete the design of tl-render and tl-next. Start with copying
TrafficLight, t1-next, and t1-render into DrRacket’s definitions area.

Here are some test cases for the design of the latter:

(check—expect (tl-render "red") ®)
O O

(check—expect (tl-render "yellow")

Your function may use these images directly. If you decide to create images with
the functions from the 2htdp/image library, design an auxiliary function for
creating the image of a one-color bulb. Then read up on the place-image
function, which can place bulbs into a background scene. 1

Exercise 60. An alternative data representation for a traffic light program
may use numbers instead of strings:

; An N-TrdfficLight is one of:

; -- 0 interpretation the traffic light shows red
; -- 1 interpretation the traffic light shows green
; -- 2 interpretation the traffic light shows yellow

It greatly simplifies the definition of t1-next:

; N-TrafficLight -> N-TrafficLight

; yields the next state, given current state cs
(define (tl-next-numeric cs) (modulo (+ cs 1) 3))

Reformulate t1-next’s tests for t1-next-numeric.
Does the tl-next function convey its intention more clearly than the t1-

next-numeric function? If so, why? If not, why not? 1

Exercise 61. As chapter 3.4 says, programs must define constants and use
names instead of actual constants. In this spirit, a data definition for traffic lights
must use constants, too:

(define RED 0) would use.
(define GREEN 1)
(define YELLOW 2)

; An S-TrdfficLight is one of:

; -- RED
; -- GREEN
;- YELLOW

This form of data definition is what a seasoned designer would use.

If the names are chosen properly, the data definition does not need an
interpretation statement.

Figure 27 displays two different functions that switch the state of a traffic
light in a simulation program. Which of the two is properly designed using the
recipe for itemization? Which of the two continues to work if you change the
constants to the following

(define RED "red")
(define GREEN '"green")
(define YELLOW "yellow")

; S-TrafficLight —> S-TrafficLight
; yields the next state, given current state cs

(check-expect (tl-next- --- RED) YELLOW)

(check—-expect (tl-next- --- YELLOW) GREEN)

(define (tl-next-numeric cs) (define (tl-next-symbolic cs)
(modulo (+ cs 1) 3)) (cond

[(equal? cs RED) GREEN]
[(equal? cs GREEN) YELLOW]
[(equal? cs YELLOW) RED]))

Figure 27: A symbolic traffic light

Does this help you answer the questions?

Aside The equal? function in figure 27 compares two arbitrary values,
regardless of what these values are. Equality is a complicated topic in the world
of programming. End 1

Here is another finite state problem that introduces a few additional
complications:

Sample Problem Design a world program that simulates the
working of a door with an automatic door closer. If this kind of
door is locked, you can unlock it with a key. An unlocked door is
closed, but someone pushing at the door opens it. Once the person
has passed through the door and lets go, the automatic door takes
over and closes the door again. When a door is closed, it can be
locked again.

To tease out the essential elements, we again draw a transition diagram; see
the left-hand side of figure 27. Like the traffic light, the door has three distinct
states: locked, closed, and open. Locking and unlocking are the activities that
cause the door to transition from the locked to the closed state and vice versa. As
for opening an unlocked door, we say that one needs to push the door open. The
remaining transition is unlike the others because it doesn’t require any activities
by anyone or anything else. Instead, the door closes automatically over time. The
corresponding transition arrow is labeled with time to emphasize this.

Following our recipe, we start with a translation of the three real-world states
into BSL data:

(define LOCKED "locked") ; A DoorState is one of:
(define CLOSED '"closed") ; -- LOCKED
(define OPEN "open") ; -- CLOSED

; -- OPEN

We also keep in mind the lesson of exercise 61, namely, that it is best to define
symbolic constants and formulate data definitions in terms of such constants.
The next step of a world design demands that we translate the chosen actions
in our domain—the arrows in the left-hand diagram—into interactions with the
computer that the Z2htdp/universe library can deal with. Our pictorial
representation of the door’s states and transitions, specifically the arrow from

open to closed, suggests the use of clock ticks. For the other arrows, we could
use either key presses or mouse clicks. Let’s use three keystrokes: "u" for
unlocking the door, "1" for locking it, and the space bar " " for pushing it open.
The right-hand-side diagram of figure 28 expresses these choices graphically; it
translates the state-machine diagram from the world of information into the
world of data in BSL.

"locked"

I}
28
o

o

—_—

u

—

"closed"

28
[e]
17
o
a

he
—5—
>
*
a,
—
o
*
S

ick?*

—a

Figure 28: A transition diagram for a door with an automatic closer

Once we have decided to use the passing of time for one action and key
presses for the others, we must design functions that render the current state of
the world—represented as DoorState—and that transform it into the next state of
the world. And that, of course, amounts to a wish list of big-bang functions:

* door-closer, which closes the door during one tick;
* door-action, which acts on it in response to pressing a key; and
* door-render, which translates the current state into an image.

Stop! Formulate appropriate signatures.

We start with door-closer. Since door-closer acts as the on-tick handler,
we get its signature from our choice of DoorState as the collection of world
states:

; DoorState -> DoorState

; closes an open door over the period of one tick
(define (door-closer state-of-door) state-of-door)

Making up examples is trivial when the world can only be in one of three states.
Here we use a table to express the basic idea, just like in some of the
mathematical examples given above:

given state desired state

LOCKED LOCKED
CLOSED CLOSED
OPEN CLOSED

Stop! Express these examples as BSL tests.
The template step demands a conditional with three clauses:

(define (door-closer state-of-door)
(cond
[(string=? LOCKED state-of-door)
[(string=? CLOSED state-of-door)
[(string=? OPEN state-of-door) ..]))

]
]

and the process of turning this template into a function definition is dictated by
the examples:

(define (door-closer state-of-door)
(cond
[(string=? LOCKED state-of-door) LOCKED]
[(string=? CLOSED state-of-door) CLOSED]
[(string=? OPEN state-of-door) CLOSED]))

Don’t forget to run your tests.

The second function, door-action, takes care of the remaining three arrows
of the diagram. Functions that deal with keyboard events consume both a world
and a key event, meaning the signature is as follows:

; DoorState KeyEvent -> DoorState
; turns key event k into an action on state s

(define (door-action s k)
S)

We once again present the examples in tabular form:

given state given key event desired state

LOCKED "u" CLOSED
CLOSED "t LOCKED
CLOSED e OPEN
OPEN — OPEN

The examples combine information from our drawing with the choices we made
about mapping actions to keyboard events. Unlike the table of examples for
traffic light, this table is incomplete. Think of some other examples; then
consider why our table suffices.

From here, it is straightforward to create a complete design:

check—-expect (door—action LOCKED "u") CLOSED)
check-expect (door-action CLOSED "1") LOCKED)
) OPEN)

check—-expect (door—action OPEN "a") OPEN)

((
((
(check—expect (door—action CLOSED " "
((
((door—action CLOSED "a") CLOSED)

check—-expect

(define (door—action s k)
(cond

[(and (string=? LOCKED s) (string=? "u" k))
CLOSED]
[(and (string=? CLOSED s) (string=? "1" k))
LOCKED]
[(and (string=? CLOSED s) (string=? " " k))
OPEN]
[else s]))

Note the use of and to combine two conditions: one concerning the current state
of the door and the other concerning the given key event.
Lastly, we need to render the state of the world as a scene:

; DoorState —> Image
; translates the state s into a large text image
(check—-expect (door—-render CLOSED)
(text CLOSED 40 "red"))
(define (door-render s)
(text s 40 "red"))

This simplistic function uses large text. Here is how we run it all:

; DoorState -> DoorState
; Simulates a door with an automatic door closer
(define (door-simulation initial-state)
(big-bang initial-state
[on-tick door-closer]

[on-key door-action]
[to-draw door-render]))

Now it is time for you to collect the pieces and run them in DrRacket to see
whether it all works.

Exercise 62. During a door simulation the “open” state is barely visible.
Modify door-simulation so that the clock ticks once every three seconds.
Rerun the simulation. 1

5 Adding Structure

Suppose you want to design a world program that simulates a ball bouncing back
and forth on a straight vertical line between the floor and ceiling of some
imaginary, perfect room. Assume that it always moves two pixels per clock tick.
If you follow the design recipe, your first goal is to develop a data representation
for what changes over time. Here, the ball’s position and its direction change
over time, but that’s two values while big-bang keeps track of just one. Thus the
question arises how one piece of data can represent two changing quantities of
information.

Here is another scenario that raises the same question. Your cell phone is
mostly a few million lines of code wrapped in plastic. Among other things, it
administrates your contacts. Each contact comes with a name, a phone number,
an email address, and perhaps some other information. When you have lots of
contacts, each single contact is best represented as a single piece of data;
otherwise the various pieces could get mixed up by accident.

Mathematicians know tricks that “merge” two numbers into a single number such that it is possible
to retrieve the original ones. Programmers consider these kinds of tricks evil because they obscure a
program’s true intentions.

Because of such programming problems, every programming language
provides some mechanism to combine several pieces of data into a single piece
of compound data and ways to retrieve the constituent values when needed. This
chapter introduces BSL’s mechanics, so-called structure type definitions, and
how to design programs that work on compound data.

5.1 From Positions to posn Structures

A position on a world canvas is uniquely identified by two pieces of data: the
distance from the left margin and the distance from the top margin. The first is
called an x-coordinate and the second one is the y-coordinate.

DrRacket, which is basically a BSL program, represents such positions with
posn structures. A posn structure combines two numbers into a single value. We
can create a posn structure with the operation make-posn, which consumes two
numbers and makes a posn. For example,

(make-posn 3 4)

is an expression that creates a posn structure whose x-coordinate is 3 and whose
y-coordinate is 4.

A posn structure has the same status as a number or a Boolean or a string. In
particular, both primitive operations and functions may consume and produce
structures. Also, a program can name a posn structure:

(define one-posn (make-posn 8 6))

Stop! Describe one-posn in terms of coordinates.

Before doing anything else, let’s take a look at the laws of computation for
posn structures. That way, we can both create functions that process posn
structures and predict what they compute.

5.2 Computing with posns

While functions and the laws of functions are completely familiar from pre-
algebra, posn structures appear to be a new idea. Then again, the concept of a
posn ought to look like the Cartesian points or positions in the plane you may
have encountered before.

Selecting a Cartesian point’s pieces is also a familiar process. For example,
when a teacher says, “take a look at the graph of figure 29 and tell me what p,
and p, are,” you are likely to answer 31 and 26, respectively, because you know
that you need to read off the values where the vertical and horizontal lines that
radiate out from p hit the axes.

50 t } ¢ } ¢ | ' |

40+ +

30+ 1
it op
204+ 4

y axis

10+ +

X axis

Figure 29: A Cartesian point

We thank Neil Toronto for the plot library.

We can express this idea in BSL. Assume you add

(define p (make-posn 31 26))

to the definitions area, click RUN, and perform these interactions:

> (posn-x p)
31

> (posn-y p)
26

Defining p is like marking the point in a Cartesian plane; using posn-x and
posn-y is like subscripting p with indexes: p, and p,.
Computationally speaking, posn structures come with two equations:

(posn-x (make-posn x0 y0)) == x0
(posn-y (make-posn x0 y0)) == y0

DrRacket uses these equations during computations. Here is an example of a
computation involving posn structures:

(posn-x p)
== , DrRacket replaces p with (make-posn 31 26)

(posn-x (make-posn 31 26))
== , DrRacket uses the law for posn-x
31

Stop! Confirm the second interaction above with your own computation. Also
use DrRacket’s stepper to double-check.

5.3 Programming with posn

Now consider designing a function that computes the distance of some location
to the origin of the canvas:

\

N

The picture clarifies that “distance” means the length of the most direct path
—“as the crow flies”—from the designated point to the top-left corner of the
canvas.

Here are the purpose statement and the header:

; computes the distance of ap to the origin
(define (distance-to-0 ap)
)

The key is that distance-to-0 consumes a single value, some posn. It produces
a single value, the distance of the location to the origin.

In order to make up examples, we need to know how to compute this
distance. For points with @ as one of the coordinates, the result is the other
coordinate:

(check-expect (distance-to-0 (make-posn 0 5)) 5)
(check-expect (distance-to-0 (make-posn 7 0)) 7)

For the general case, we could try to figure out the formula on our own, or we
may recall the formula from our geometry courses. As you know, this is domain
knowledge that you might have, but in case you don’t we supply it; after all, this

domain knowledge isn’t computer science. So, here is the distance formula for
(x,y) again:

2+ P

Given this formula, we can easily make up some more functional examples:

(check-expect (distance-to-0 (make-posn 3 4)) 5)
(check-expect (distance-to-0 (make-posn 8 6)) 10)
(check-expect (distance-to-0 (make-posn 5 12)) 13)

Just in case you’re wondering, we rigged the examples so that the results would
be easy to figure out. This isn’t the case for all posn structures.

Stop! Plug the x-and y-coordinates from the examples into the formula.
Confirm the expected results for all five examples.

Next we can turn our attention to the definition of the function. The
examples imply that the design of distance-to-0 does not need to distinguish
between different situations; it always just computes the distance from the x-and
y-coordinates inside the given posn structure. But the function must select these
coordinates from the given posn structure. And for that, it uses the posn-x and
posn-y primitives. Specifically, the function needs to compute (posn-x ap) and
(posn-y ap) because ap is the name of the given, unknown posn structure:

(define (distance-to-0 ap)

(.. (posn-x ap) ..
.. (posn-y ap) ..))

Using this template and the examples, the rest is straightforward:

(define (distance-to-0 ap)
(sgrt
(+ (sgr (posn—-x ap))
(sgr (posn-y ap)))))

The function squares (posn-x ap) and (posn-y ap), which represent the x-and
y-coordinates, sums up the results, and takes the square root. With DrRacket, we
can also quickly check that our new function produces the proper results for our

examples.
Exercise 63. Evaluate the following expressions:

* (distance-to-0 (make-posn 3 4))
* (distance-to-0 (make-posn 6 (* 2 4)))
* (+ (distance-to-0 (make-posn 12 5)) 10)

by hand. Show all steps. Assume that sqr performs its computation in a single
step. Check the results with DrRacket’s stepper. 1

Exercise 64. The Manhattan distance of a point to the origin considers a path
that follows the rectangular grid of streets found in Manhattan. Here are two
examples:

The left one shows a “direct” strategy, going as far left as needed, followed by as
many upward steps as needed. In comparison, the right one shows a “random
walk” strategy, going some blocks leftward, some upward, and so on until the
destination—here, the origin—is reached.

Stop! Does it matter which strategy you follow?

Design the function manhattan-distance, which measures the Manhattan
distance of the given posn to the origin.

5.4 Defining Structure Types

Unlike numbers or Boolean values, structures such as posn usually don’t come
with a programming language. Only the mechanism to define structure types is
provided; the rest is left up to the programmer. This is also true for BSL.

A structure type definition is another form of definition, distinct from
constant and function definitions. Here is how the creator of DrRacket defined
the posn structure type in BSL:

(define-struct posn [x y])

In general, a structure type definition has this shape:

(define-struct StructureName [FieldName ..])

The use of brackets in a structure type definition is a convention, not a necessity. It makes the field
names stand out. Replacing brackets with parentheses is perfectly acceptable.

The keyword define-struct signals the introduction of a new structure type. It
is followed by the name of the structure. The third part of a structure type
definition is a sequence of names enclosed in brackets; these names are the
fields.

A structure type definition actually defines functions. But, unlike an ordinary
function definition, a structure type definition defines many functions
simultaneously. Specifically, it defines three kinds of functions:

» one constructor, a function that creates structure instances. It takes as
many values as there are fields; as mentioned, structure is short for
structure instance. The phrase structure type is a generic name for the
collection of all possible instances;

* one selector per field, which extracts the value of the field from a structure
instance; and

* one structure predicate, which, like ordinary predicates, distinguishes
instances from all other kinds of values.

A program can use these as if they were functions or built-in primitives.

Curiously, a structure type definition makes up names for the various new
operations it creates. For the name of the constructor, it prefixes the structure
name with “make-" and for the names of the selectors it postfixes the structure
name with the field names. Finally, the predicate is just the structure name with
“?” added, pronounced “huh” when read aloud.

This naming convention looks complicated and perhaps even confusing. But,
with a little bit of practice, you’ll get the hang of it. It also explains the functions
that come with posn structures: make-posn is the constructor, posn-x and posn-y
are selectors. While we haven’t encountered posn? yet, we now know that it
exists; the next chapter explains the role of these predicates in detail.

Exercise 65. Take a look at the following structure type definitions:

(define-struct movie [title producer year])

(define-struct person [name hair eyes phone])

(define-struct pet [name number])

(define-struct CD [artist title price])

(define-struct sweater [material size producer])

Write down the names of the functions (constructors, selectors, and predicates)
that each introduces. 1

Enough with posn structures for a while. Let’s look at a structure type
definition that we might use to keep track of contacts such as those in your cell
phone:

(define-struct entry [name phone email])
Here are the names of the functions that this definition introduces:

* make-entry, which consumes three values and constructs an instance of
y
entry;

* entry-name, entry-phone, and entry-email, which consume one instance
of entry and select one of the three field values; and

* entry?, the predicate.
Since each entry combines three values, the expression

(make-entry "Al Abe" "666-7771" "lee@x.me")

creates an entry structure with "Al Abe" in the name field, "666-7771" in the
phone field, and "lee@x.me" in the email field.

Exercise 66. Revisit the structure type definitions of exercise 65. Make
sensible guesses as to what kind of values go with which fields. Then create at
least one instance per structure type definition. 1

Every structure type definition introduces a new kind of structure, distinct
from all others. Programmers want this kind of expressive power because they
wish to convey an intention with the structure name. Wherever a structure is
created, selected, or tested, the text of the program explicitly reminds the reader
of this intention. If it weren’t for these future readers of code, programmers
could use one structure definition for structures with one field, another for
structures with two fields, a third for structures with three, and so on.

In this context, let’s study another programming problem:

Sample Problem Develop a structure type definition for a
program that deals with “bouncing balls,” briefly mentioned at
the very beginning of this chapter. The ball’s location is a single
number, namely the distance of pixels from the top. Its constant
speed is the number of pixels it moves per clock tick. Its velocity
is the speed plus the direction in which it moves.

Since the ball moves along a straight, vertical line, a number is a perfectly
adequate data representation for its velocity:

* A positive number means the ball moves down.
* A negative number means it moves up.

We can use this domain knowledge to formulate a structure type definition:

(define-struct ball [location velocity])

Both fields are going to contain numbers, so (make-ball 10 -3) is a good data
example. It represents a ball that is 16 pixels from the top and moves up at 3
pixels per clock tick.

Notice how, in principle, a ball structure merely combines two numbers,
just like a posn structure. When a program contains the expression (ball-
velocity a-ball), it immediately conveys that this program deals with the
representation of a ball and its velocity. In contrast, if the program used posn
structures instead, (posn-y a-ball) might mislead a reader of the code into
thinking that the expression is about a y-coordinate.

Exercise 67. Here is another way to represent bouncing balls:

(define SPEED 3)
(define-struct balld [location direction])
(make-balld 10 "up")

Interpret this code fragment and create other instances of balld.1

Since structures are values, just like numbers or Booleans or strings, it makes
sense that one instance of a structure occurs inside another instance. Consider
game objects. Unlike bouncing balls, such objects don’t always move along
vertical lines. Instead, they move in some “oblique” manner across the canvas.
Describing both the location and the velocity of a ball moving across a 2-
dimensional world canvas demands two numbers: one per direction. For the
location part, the two numbers represent the x-and y-coordinates. Velocity
describes the changes in the horizontal and vertical direction; in other words,
these “change numbers” must be added to the respective coordinates to find out
where the object will be next.

It is physics that tells you to add an object’s velocity to its location to obtain its next location.
Developers need to learn whom to ask about which domain.

Clearly, posn structures can represent locations. For the velocities, we define
the vel structure type:

(define-struct vel [deltax deltay])

It comes with two fields: deltax and deltay. The word “delta” is commonly
used to speak of change when it comes to simulations of physical activities, and

the x and y parts indicate which axis is concerned.

Now we can use instances of ball to combine a posn structure with a vel
structure to represent balls that move in straight lines but not necessarily along
only vertical (or horizontal) lines:

(define ballil
(make-ball (make-posn 30 40) (make-vel -10 5)))

One way to interpret this instance is to think of a ball that is 30 pixels from the
left and 40 pixels from the top. It moves 10 pixels toward the left per clock tick,
because subtracting 10 pixels from the x-coordinate brings it closer to the left.
As for the vertical direction, the ball drops at 5 pixels per clock tick, because
adding positive numbers to a y-coordinate increases the distance from the top.

Exercise 68. An alternative to the nested data representation of balls uses
four fields to keep track of the four properties:

(define-struct ballf [x y deltax deltay])

Yet another alternative is to use complex numbers. If you know about them, contemplate a data
representation that uses them for both location and velocity. For example, in BSL, 4-31i is a complex
number and could be used to represent the location or velocity (4,-3).

Programmers call this a flat representation. Create an instance of ballf that has
the same interpretation as balli.

For a second example of nested structures, let’s briefly look at the example
of contact lists. Many cell phones support contact lists that allow several phone
numbers per name: one for a home line, one for the office, and one for a cell
phone number. For phone numbers, we wish to include both the area code and
the local number. Since this nests the information, it’s best to create a nested
data representation, too:

(define-struct centry [name home office cell])
(define-struct phone [area number])
(make-centry "Shriram Fisler"

(make-phone 207 "363-2421")
(make-phone 101 "776-1099")

(make-phone 208 "112-9981"))

The intention here is that an entry on a contact list has four fields: a name and
three phone records. The latter are represented with instance of phone, which
separates the area code from the local phone number.

In sum, nesting information is natural. The best way to represent such
information with data is to mirror the nesting with nested structure instances.
Doing so makes it easy to interpret the data in the application domain of the
program, and it is also straightforward to go from examples of information to
data. Of course, it is really the task of data definitions to specify how to go back
and forth between information and data. Before we study data definitions for
structure type definitions, however, we first take a systematic look at computing
with, and thinking about, structures.

5.5 Computing with Structures

Structure types generalize Cartesian points in two ways. First, a structure type
may specify an arbitrary number of fields: zero, one, two, three, and so forth.
Second, structure types name fields, they don’t number them. This helps
programmers read code because it is much easier to remember that a family
name is available in a field called last-name than in the 7th field.

Most programming languages also support structure-like data that use numeric field names.

In the same spirit, computing with structure instances generalizes the
manipulation of Cartesian points. To appreciate this idea, let us first look at a
diagrammatic way to think about structure instances as lockboxes with as many
compartments as there are fields. Here is a representation of

(definepl(make-entry"Al Abe""666-7771""lee@x.me"))

as such a diagram:

| entry
name phone email

"Al Abe"|"666-7771"|"lee@x.me"

The box’s italicized label identifies it as an instance of a specific structure type;
each compartment is labeled, too. Here is another instance:

(make-entry "Tara Harp" "666-7770" "th@smlu.edu")

corresponds to a similar box diagram, though the content differs:

| entry
name phone email

"Tara Harp"|"666-7770"|"th@smlu.edu"

Not surprisingly, nested structure instances have a diagram of boxes nested
in boxes. Thus, balll from above is equivalent to this diagram:

[ba]

location | velocity

posn vel
x__|y__|||deltax | deltay
30{40(([-10 [+5

In this case, the outer box contains two boxes, one per field.

Exercise 69. Draw box representations for the solution of exercise 65. 1

In the context of this imagery, a selector is like a key. It opens a specific
compartment for a certain kind of box and thus enables the holder to extract its
content. Hence, applying entry-name to pl from above yields a string:

> (entry-name pl)
"Al Abe"

But entry-name applied to a posn structure signals an error:

> (entry-name (make-posn 42 5))
entry-name:expects an entry, given (posn 42 5)

If a compartment contains a box, it might be necessary to use two selectors in a
row to get to the desired number:

> (ball-velocity balll)
(make-vel -10 5)

Applying ball-velocity to balll extracts the value of the velocity field, which
is an instance of vel. To get to the velocity along the x axis, we apply a selector
to the result of the first selection:

> (vel-deltax (ball-velocity balll))
-10

Since the inner expression extracts the velocity from balli, the outer expression
extracts the value of the deltax field, which in this case is -10.

The interactions also show that structure instances are values. DrRacket
prints them exactly as entered, just like for plain values such as numbers:

> (make-vel -10 5)
(make-vel -10 5)
> (make—-entry "Tara Harp" "666-7770" "th@smlu.edu")
(make—-entry "Tara Harp" "666-7770" "th@smlu.edu")
> (make-centry
"Shriram Fisler"
(make-phone 207 "363-2421")
(make-phone 101 "776-1099")
(make-phone 208 "112-9981"))
(make-centry ...)

Stop! Try this last interaction at home, so you see the proper result.

Generally speaking, a structure type definition not only creates new
functions and new ways to create values, but it also adds new laws of
computation to DrRacket’s knowledge. These laws generalize those for posn
structures in chapter 5.2, and they are best understood by example.

When DrRacket encounters a structure type definition with two fields,

(define-struct ball [location velocity])

it introduces two laws, one per selector:

(ball-location (make-ball 10 v0)) == 10
(ball-velocity (make-ball 10 vO)) == vO

For different structure type definitions, it introduces analogous laws. Thus,

(define-struct vel [deltax deltay])

DrRacket adds these two laws to its knowledge:

(vel-deltax (make-vel dx0 dy@)) == dxO
(vel-deltay (make-vel dx0 dy@)) == dyo

Using these laws, we can now explain the interaction from above:

(vel-deltax (ball-velocity balll))
== , DrRacket replaces balll with its value
(vel-deltax

(ball-velocity
(make-ball (make-posn 30 40) (make-vel -10 5))))
== , DrRacket uses the law for ball-velocity
(vel-deltax (make-vel -10 5))
== , DrRacket uses the law for vel-deltax
-10

Exercise 70. Spell out the laws for these structure type definitions:

(define-struct centry [name home office cell])
(define-struct phone [area number])

Use DrRacket’s stepper to confirm 101 as the value of this expression:

(phone-area
(centry-office
(make-centry "Shriram Fisler"
(make-phone 207 "363-2421")
(make-phone 101 "776-1099")
(make-phone 208 "112-9981"))))

Predicates are the last idea that we must discuss to understand structure type
definitions. As mentioned, every structure type definition introduces one new
predicate. DrRacket uses these predicates to discover whether a selector is
applied to the proper kind of value; the next chapter explains this idea in detail.
Here we just want to convey that these predicates are just like the predicates
from “arithmetic.” While number? recognizes numbers and string? recognizes
strings, predicates such as posn? and entry? recognize posn structures and
entry structures. We can confirm our ideas of how they work with experiments
in the interactions area. Assume that the definitions area contains these
definitions:

(define ap (make-posn 7 0))

(define pl (make-entry "Al Abe" "666-7771" "lee@x.me"))

If posn? is a predicate that distinguishes posns from all other values, we should
expect that it yields #false for numbers and #true for ap:

> (posn? ap)

#true

> (posn? 42)

#false

> (posn? #true)

#false

> (posn? (make-posn 3 4))
#true

Similarly, entry? distinguishes entry structures from all other values:

> (entry? pl)
#true

> (entry? 42)
#false

> (entry? #true)
#false

In general, a predicate recognizes exactly those values constructed with a
constructor of the same name. Intermezzo 1 explains this law in detail, and it
also collects the laws of computing for BSL in one place.

Exercise 71. Place the following into DrRacket’s definitions area:

; distances in terms of pixels:
(define HEIGHT 200)

(define MIDDLE (quotient HEIGHT 2))
(define WIDTH 400)

(define CENTER (quotient WIDTH 2))

(define-struct game [left-player right-player ball])

(define game0®
(make-game MIDDLE MIDDLE (make-posn CENTER CENTER)))

Click RUN and evaluate the following expressions:

(game-ball gameO)
(posn? (game-ball game0))
(game-left-player game0)

Explain the results with step-by-step computations. Double-check your
computations with DrRacket’s stepper. 1

5.6 Programming with Structures

Proper programming calls for data definitions. With the introduction of structure
type definitions, data definitions become interesting. Remember that a data
definition provides a way of representing information into data and interpreting
that data as information. For structure types, this calls for a description of what
kind of data goes into which field. For some structure type definitions,
formulating such descriptions is easy and obvious:

(define-struct posn [X y])

; A Posn is a structure:

; (make-posn Number Number)

; interpretation a point x pixels from left, y from top

It doesn’t make any sense to use other kinds of data to create a posn. Similarly,
all fields of entry—our structure type definition for entries on a contact list—are
clearly supposed to be strings, according to our usage in the preceding section:

(define-struct entry [name phone email])

; An Entry is a structure:

; (make-entry String String String)

; interpretation a contact's name, phone#, and email

For both posn and entry, a reader can easily interpret instances of these
structures in the application domain.

Contrast this simplicity with the structure type definition for ball, which
obviously allows at least two distinct interpretations:

(define-struct ball [location velocity])

; A Ball-1d is a structure:

; (make-ball Number Number)

; interpretation 1 distance to top and velocity
; interpretation 2 distance to left and velocity

Whichever one we use in a program, we must stick to it consistently. As chapter
5.4 shows, however, it is also possible to use ball structures in an entirely

different manner:

; A Ball-2d is a structure:
; (make-ball Posn Vel)
; interpretation a 2-dimensional position and velocity

(define-struct vel [deltax deltay])

; A Vel is a structure:

; (make-vel Number Number)

; interpretation (make-vel dx dy) means a velocity of

; dx pixels [per tick] along the horizontal and
; dy pixels [per tick] along the vertical direction

Here we name a second collection of data, Ball-2d, distinct from Ball-1d, to
describe data representations for balls that move in straight lines across a world
canvas. In short, it is possible to use one and the same structure type in two
different ways. Of course, within one program, it is best to stick to one and only
one use; otherwise you are setting yourself up for problems.

Also, Ball-2d refers to another one of our data definitions, namely, the one
for Vel. While all other data definitions have thus far referred to built-in data
collections (Number, Boolean, String), it is perfectly acceptable, and indeed
common, that one of your data definitions refers to another.

Exercise 72. Formulate a data definition for the above phone structure type
definition that accommodates the given examples.

Next formulate a data definition for phone numbers using this structure type
definition:

(define-struct phone# [area switch num])

Historically, the first three digits make up the area code, the next three the code
for the phone switch (exchange) of your neighborhood, and the last four the
phone with respect to the neighborhood. Describe the content of the three fields
as precisely as possible with intervals. 1

At this point, you might be wondering what data definitions really mean.
This question, and its answer, is the topic of the next section. For now, we
indicate how to use data definitions for program design.

Here is a problem statement to set up some context:

Sample Problem Your team is designing an interactive game
program that moves a red dot across a 100 x 100 canvas and
allows players to use the mouse to reset the dot. Here is how far
you got together:

(define MTS (empty-scene 100 100))
(define DOT (circle 3 "solid" "red"))

; A Posn represents the state of the world.

; Posn -> Posn
(define (main poO)
(big-bang po0

[on-tick x+]

[on-mouse reset-dot]
[to-draw scene+dot]))

Your task is to design scene+dot, the function that adds a red dot
to the empty canvas at the specified position.

The problem context dictates the signature of your function:

; Posn -> Image

; adds a red spot to MTS at p
(define (scene+dot p) MTS)

Adding a purpose statement is straightforward. As chapter 3.1 mentions, it uses
the function’s parameter to express what the function computes.
Now we work out a couple of examples and formulate them as tests:

(check-expect (scene+dot (make-posn 10 20))
(place-image DOT 10 20 MTS))
(check-expect (scene+dot (make-posn 88 73))
(place-image DOT 88 73 MTS))

Given that the function consumes a Posn, we know that the function can

extract the values of the x and y fields:

(define (scene+dot p)
(.. (posn-x p) .. (posn-y p) ..))

Once we see these additional pieces in the body of the function, the rest of the
definition is straightforward. Using place-image, the function puts DOT into MTS
at the coordinates contained in p:

(define (scene+dot p)
(place-image DOT (posn-x p) (posn-y p) MTS))

A function may produce structures. Let’s resume our sample problem from
above because it includes just such a task:

Sample Problem A colleague is asked to define x+, a function
that consumes a Posn and increases the x-coordinate by 3.

Recall that the x+ function handles clock ticks.
We can adapt the first few steps of the design of scene+dot:

; Posn -> Posn
; increases the x-coordinate of p by 3
(check-expect (x+ (make-posn 10 0)) (make-posn 13 0))
(define (x+ p)
(.. (posn-x p) .. (posn-y p) ..))

The signature, the purpose, and the example all come out of the problem
statement. Instead of a header—a function with a default result—our sketch
contains the two selector expressions for Posns. After all, the information for the
result must come from the inputs, and the input is a structure that contains two
values.

Finishing the definition is easy now. Since the desired result is a Posn, the
function uses make-posn to combine the pieces:

(define (x+ p)
(make-posn (+ (posn-x p) 3) (posn-y p)))

Exercise 73. Design the function posn-up-x, which consumes a Posn p and a

Number n. It produces a Posn like p with n in the x field.
A neat observation is that we can define x+ using posn-up-x:

(define (x+ p)
(posn-up-x p (+ (posn-x p) 3)))

Note Functions such as posn-up-x are often called updaters or functional
setters. They are extremely useful when you write large programs. 1

A function may also produce instances from atomic data. While make-posn
is a built-in primitive that does so, our running problem provides another fitting
illustration:

Sample Problem Another colleague is tasked to design reset-
dot, a function that resets the dot when the mouse is clicked.

To tackle this problem, you need to recall from chapter 3.6 that mouse-event
handlers consume four values: the current state of the world, the x-and y-
coordinates of the mouse click, and a MouseEwvt.

By adding the knowledge from the sample problem to the program design
recipe, we get a signature, a purpose statement, and a header:

; Posn Number Number MouseEvt -> Posn

; for mouse clicks, (make-posn x y); otherwise p
(define (reset-dot p x y me) p)

Examples for mouse-event handlers need a Posn, two numbers, and a
MouseEvt, which is just a special kind of String. A mouse click, for example, is
represented with one of two strings: "button-down" and "button-up". The first
one signals that a user clicked the mouse button, the latter signals its release.
With this in mind, here are two examples, which you may wish to study and
interpret:

(check-expect
(reset-dot (make-posn 10 20) 29 31 "button-down")
(make-posn 29 31))

(check-expect
(reset-dot (make-posn 10 20) 29 31 "button-up")
(make-posn 10 20))

Although the function consumes only atomic forms of data, its purpose
statement and the examples suggest that it differentiates between two kinds of
MouseEvts: "button-down" and all others. Such a case split suggests a cond
expression:

(define (reset-dot p x y me)
(cond
[(mouse=? "button-down" me) (.. p .. XYy ..)]

[else (.. p .. XY .)]))

Following the design recipe, this skeleton mentions the parameters to remind
you of what data is available.

The rest is straightforward again because the purpose statement itself dictates
what the function computes in each of the two cases:

(define (reset-dot p x y me)
(cond
[(mouse=? me "button-down") (make-posn x y)]

[else p]))

As above, we could have mentioned that make-posn creates instances of Posn,
but you know this and we don’t need to remind you constantly.

Exercise 74. Copy all relevant constant and function definitions to
DrRacket’s definitions area. Add the tests and make sure they pass. Then run the
program and use the mouse to place the red dot. 1

Many programs deal with nested structures. We illustrate this point with
another small excerpt from a world program:

Sample Problem Your team is designing a game program that
keeps track of an object that moves across the canvas at changing
speed. The chosen data representation requires two data
definitions:

(define-struct ufo [loc vel])
; A UFO is a structure:
; (make-ufo Posn Vel)

; interpretation (make-ufo p v) is at location
; p moving at velocity v

Remember, it’s about physics.

It is your task to develop ufo-move-1. The function computes the
location of a given UFO after one clock tick passes.

Let us start with some examples that explore the data definitions a bit:

(define v1 (make-vel 8 -3))
(define v2 (make-vel -5 -3))

(define pl1 (make-posn 22 80))
(define p2 (make-posn 30 77))

(define ul (make-ufo pl v1))
(define u2 (make-ufo pl v2))
(define u3 (make-ufo p2 vi1))
(define u4 (make-ufo p2 v2))

The order of these definitions matters. See intermezzo 1.

The first four are elements of Vel and Posn. The last four combine the first four
in all possible combinations.

Next we write down a signature, a purpose, some examples, and a function
header:

; UFO -> UFO
; determines where u moves in one clock tick;
; leaves the velocity as is

(check—-expect (ufo-move-1 ul) u3)
(check—-expect (ufo-move-1 u2)
(make-ufo (make—-posn 17 77) v2))

(define (ufo-move-1 u) u)

For the function examples, we use the data examples and our domain knowledge
of positions and velocities. Specifically, we know that a vehicle that is moving
north at 60 miles per hour and west at 10 miles per hour is going to end up 60

miles north from its starting point and 10 miles west after one hour of driving.
After two hours, it will be 120 miles north from the starting point and 20 miles
to its west.

As always, a function that consumes a structure instance can (and probably
must) extract information from the structure to compute its result. So once again
we add selector expressions to the function definition:

(define (ufo-move-1 u)
(.. (ufo-loc u) .. (ufo-vel u) ..))

Note The selector expressions raise the question whether we need to refine
this sketch even more. After all, the two expressions extract instances of Posn
and Vel, respectively. These two are also structure instances, and we could
extract values from them in turn. Here is what the resulting skeleton would look
like:

; UFO -> UFO
(define (ufo-move-1 u)
(.. (posn-x (ufo-loc u)) ..
. (posn-y (ufo-loc u)) .

. (vel-deltax (ufo-vel u))
. (vel-deltay (ufo-vel u)) m))

Doing so obviously makes the sketch look quite complex, however. For truly
realistic programs, following this idea to its logical end would create incredibly
complex program outlines. More generally,

If a function deals with nested structures, develop one function
per level of nesting.

In the second part of the book, this guideline becomes even more important and
we refine it a bit. End

Here we focus on how to combine the given Posn and the given Vel in order
to obtain the next location of the UFO—because that’s what our physics
knowledge tells us. Specifically, it says to “add” the two together, where
“adding” can’t mean the operation we usually apply to numbers. So let us
imagine that we have a function for adding a Vel to a Posn:

; Posn Vel -> Posn

; adds v to p
(define (posn+ p Vv) p)

Writing down the signature, purpose, and header like this is a legitimate way of
programming. It is called “making a wish” and is a part of “making a wish list”
as described in chapter 3.4.

The key is to make wishes in such a way that we can complete the function
that we are working on. In this manner, we can split difficult programming tasks
into different tasks, a technique that helps us solve problems in reasonably small
steps. For the sample problem, we get a complete definition for ufo-move-1:

(define (ufo-move-1 u)
(make—ufo (posnt+ (ufo—-loc u) (ufo-vel u))
(ufo-vel u)))

Because ufo-move-1 and posn+ are complete definitions, we can even click
RUN, which checks that DrRacket doesn’t complain about grammatical
problems with our work so far. Naturally, the tests fail because posn+ is just a
wish, not the function we need.

Now it is time to focus on posn+. We have completed the first two steps of
the design (data definitions, signature/purpose/header), so we must create
examples. One easy way to create functional examples for a “wish” is to use the
examples for the original function and to turn them into examples for the new
function:

(check-expect (posn+ pl v1l) p2)
(check-expect (posn+ pl v2) (make-posn 17 77))

In geometry, the operation corresponding to posn+ is called a translation.

For this problem, we know that (ufo-move-1 (make-ufo pi1 v1)) is to produce
p2. At the same time, we know that ufo-move-1 applies posn+ to p1 and vi,
implying that posn+ must produce p2 for these inputs. Stop! Check our manual
calculations to ensure that you are following what we are doing.

We are now able to add selector expressions to our design sketch:

(define (posn+ p v)

(.. (posn-x p) .. (posn-y p) ..
.. (vel-deltax v) .. (vel-deltay v) ..))

Because posn+ consumes instances of Posn and Vel and because each piece of
data is an instance of a two-field structure, we get four expressions. In contrast to
the nested selector expressions from above, these are simple applications of a
selector to a parameter.

If we remind ourselves what these four expressions represent, or if we recall
how we computed the desired results from the two structures, our completion of
the definition of posn+ is straightforward:

(define (posn+ p V)
(make-posn (+ (posn—-x p) (vel-deltax v))
(+ (posn-y p) (vel-deltay v))))

The first step is to add the velocity in the horizontal direction to the x-coordinate
and the velocity in the vertical direction to the y-coordinate. This yields two
expressions, one per new coordinate. With make-posn we can combine them into
a single Posn again.

Exercise 75. Enter these definitions and their test cases into the definitions
area of DrRacket and make sure they work. This is the first time that you have
dealt with a “wish,” and you need to make sure you understand how the two
functions work together. 1

5.7 The Universe of Data

Every language comes with a universe of data. This data represents information
from and about the external world; it is what programs manipulate. This universe
of data is a collection that not only contains all built-in data but also any piece of
data that any program may ever create.

Remember that mathematicians call data collections or data classes sets.

The left side of figure 30 shows one way to imagine the universe of BSL.
Since there are infinitely many numbers and strings, the collection of all data is
infinite. We indicate “infinity” in the figure with “--.”, but a real definition
would have to avoid this imprecision.

0123 ... 0123 ...

#true #false #true #false

"hello"
"world"

"hello"
"world"

"good"
"hye"

"good"
"bye"

4-3i 4-3i

Figure 30: The universe of data

Neither programs nor individual functions in programs deal with the entire
universe of data. It is the purpose of a data definition to describe parts of this
universe and to name these parts so that we can refer to them concisely. Put
differently, a named data definition is a description of a collection of data, and
that name is usable in other data definitions and in function signatures. In a
function signature, the name specifies what data a function will deal with and,
implicitly, which part of the universe of data it won’t deal with.

Practically, the data definitions of the first four chapters restrict built-in
collections of data. They do so via an explicit or implicit itemization of all

included values. For example, the region shaded with gray on the right side in
figure 30 depicts the following data definition:

; A BS is one of:
- "hello",

- "world", or
;o--- pi.

While this particular data definition looks silly, note the stylized mix of English
and BSL that is used. Its meaning is precise and unambiguous, clarifying exactly
which elements belong to BS and which don’t.

The definition of structure types completely revised the picture. When a
programmer defines a structure type, the universe expands with all possible
structure instances. For example, the addition of posn means that instances of
posn with all possible values in the two fields appear. The middle bubble in
figure 31 depicts the addition of these values, including such seeming nonsense
as (make-posn "hello" 0) and (make-posn (make-posn 0 1) 2). And yes,
some of these instances of posn make no sense to us. But, a BSL program may

construct any of them.

0123 ...

(make-posn "hello" 0)
(make-posn "world" 1)
(make-posn "good" 2)

#true #false

. . (make-ball -1 0)
“hello (make-ball -1 1)
world" (make-posn "bye" 3) (make-ball -1 2)
"good" (make-posn (make-posn 0 1) 2) (make-ball -1 3)
"bye" (make-posn 0 3) (make-ball "bye" #t)

(make-posn 1 3)
(make-posn 2 3)
(make-posn 3 3)

4-3i

Figure 31: Adding structure to a universe

Adding yet another structure type definition mixes and matches everything
again. Say we add the definition for ball, also with two fields. As the third
bubble in figure 31 shows, this addition creates instances of ball that contain

numbers, posn structures, and so on, as well as instances of posn that contain
instances of ball. Try it out in DrRacket! Add

(define-struct ball [location velocity])

to the definitions area, hit RUN, and create some structure instances.

As far as the pragmatics of data definitions is concerned, a data definition for
structure types describes large collections of data via combinations of existing
data definitions with instances. When we write

; Posn is (make-posn Number Number)

we are describing an infinite number of possible instances of posn. Like above,
the data definitions use combinations of natural language, data collections
defined elsewhere, and data constructors. Nothing else should show up in a data
definition at the moment.

A data definition for structures specifies a new collection of data made up of
those instances to be used by our functions. For example, the data definition for
Posns identifies the region shaded in gray in the center bubble of the universe in
figure 31, which includes all those posn structures whose two fields contain
numbers. At the same time, it is perfectly possible to construct an instance of
posn that doesn’t satisfy the requirement that both fields contain numbers:

(make-posn (make-posn 1 1) "hello")

This structure contains a posn in the x field and a string in the y field.
Exercise 76. Formulate data definitions for the following structure type
definitions:

(define-struct movie [title producer year])

(define-struct person [name hair eyes phone])

(define-struct pet [name number])

(define-struct CD [artist title price])

(define-struct sweater [material size producer])

Make sensible assumptions as to what kind of values go into each field. 1

Exercise 77. Provide a structure type definition and a data definition for
representing points in time since midnight. A point in time consists of three
numbers: hours, minutes, and seconds. 1

Exercise 78. Provide a structure type and a data definition for representing
three-letter words. A word consists of lowercase letters, represented with the
1Strings "a" through "z" plus #false. Note This exercise is a part of the design
of a hangman game; see exercise 396. 1

Programmers not only write data definitions, they also read them in order to
understand programs, to expand the kind of data they can deal with, to eliminate
errors, and so on. We read a data definition to understand how to create data that
belongs to the designated collection and to determine whether some piece of data
belongs to some specified class.

Since data definitions play such a central and important role in the design
process, it is often best to illustrate data definitions with examples just like we
illustrate the behavior of functions with examples. And indeed, creating data
examples from a data definition is straightforward:

« for a built-in collection of data (number, string, Boolean, images), choose
your favorite examples;

Note On occasion, people use descriptive names to qualify built-in data
collections, such as NegativeNumber or OneLetterString. They are no
replacement for a well-written data definition. End

 for an enumeration, use several of the items of the enumeration;

« for intervals, use the end points (if they are included) and at least one
interior point;

« for itemizations, deal with each part separately; and

+ for data definitions for structures, follow the natural language description;
that is, use the constructor and pick an example from the data collection
named for each field.

That’s all there is to constructing examples from data definitions for most of this

book, though data definitions are going to become much more complex than
what you have seen so far.
Exercise 79. Create examples for the following data definitions:

e ; A Color is one of:

; --- "white"
; --- "yellow"
; --- "orange"
; --- "green"
;- "red"

; --- "blue"

; --- "black"

Note DrRacket recognizes many more strings as colors. End

* , H is a Number between 0 and 100.
; interpretation represents a happiness value

* (define-struct person [fstname lstname male?])
; A Person is a structure:
; (make-person String String Boolean)

Is it a good idea to use a field name that looks like the name of a predicate?

* (define-struct dog [owner name age happiness])
; A Dog is a structure:
; (make-dog Person String PositiveInteger H)

Add an interpretation to this data definition, too.

* , A Weapon is one of:
; --- #false
; --- Posn
; interpretation #false means the missile hasn't
; been fired yet; a Posn means it is in flight

The last definition is an unusual itemization, combining built-in data with a
structure type. The next chapter deals with such definitions in depth.

5.8 Designing with Structures

The introduction of structure types reinforces the need for all six steps in the
design recipe. It no longer suffices to rely on built-in data collections to
represent information; it is now clear that programmers must create data
definitions for all but the simplest problems.

This section adds a design recipe, illustrating it with the following:

Sample Problem Design a function that computes the distance of
objects in a 3-dimensional space to the origin.

Here we go:

1. When a problem calls for the representation of pieces of information that
belong together or describe a natural whole, you need a structure type
definition. It requires as many fields as there are relevant properties. An
instance of this structure type corresponds to the whole, and the values in
the fields correspond to its attributes.

A data definition for a structure type introduces a name for the collection
of instances that are legitimate. Furthermore, it must describe which kind
of data goes with which field. Use only names of built-in data collections
or previously defined data definitions.

In the end, we (and others) must be able to use the data definition to create
sample structure instances. Otherwise, something is wrong with our data
definition. To ensure that we can create instances, our data definitions
should come with data examples.

Here is how we apply this idea to the sample problem:
(define-struct r3 [x y z])

; An R3 is a structure:
; (make-r3 Number Number Number)

(define ex1 (make-r3 1 2 13))
(define ex2 (make-r3 -1 0 3))

The structure type definition introduces a new kind of structure, r3, and
the data definition introduces R3 as the name for all instances of r3 that

contain only numbers.

2. You still need a signature, a purpose statement, and a function header but
they remain the same. Stop! Do it for the sample problem.

3. Use the examples from the first step to create functional examples. For
each field associated with intervals or enumerations, make sure to pick end
points and intermediate points to create functional examples. We expect
you to continue working on the sample problem.

4. A function that consumes structures usually—though not always—extracts
the values from the various fields in the structure. To remind yourself of
this possibility, add a selector for each field to the templates for such
functions.

Here is what we have for the sample problem:

; R3 -> Number
; determines the distance of p to the origin

(define (r3-distance-to-0 p)
(.. (r3-xp) .. (r3-y p) .. (r3-z p) ..))

You may want to write down next to each selector expression what kind of
data it extracts from the given structure; you can find this information in
the data definition. Stop! Just do it!

5. Use the selector expressions from the template when you define the
function. Keep in mind that you may not need some of them.

6. Test. Test as soon as the function header is written. Test until all
expressions have been covered. Test again when you make changes.

Finish the sample problem. If you cannot remember the distance of a 3-
dimensional point to the origin, look it up in a geometry book.

There you will find a formula such as \/x? + y? + z2.

Exercise 80. Create templates for functions that consume instances of the
following structure types:

(define-struct movie [title director year])

(define-struct pet [name number])

(define-struct CD [artist title price])

(define-struct sweater [material size color])

No, you do not need data definitions for this task.

Exercise 81. Design the function time->seconds, which consumes instances
of time structures (see exercise 77) and produces the number of seconds that
have passed since midnight. For example, if you are representing 12 hours, 30
minutes, and 2 seconds with one of these structures and if you then apply time-
>seconds to this instance, the correct result is 45002.1

Exercise 82. Design the function compare-word. The function consumes two
three-letter words (see exercise 78). It produces a word that indicates where the
given ones agree and disagree. The function retains the content of the structure
fields if the two agree; otherwise it places #false in the field of the resulting
word. Hint The exercises mentions two tasks: the comparison of words and the
comparison of “letters.” 1

5.9 Structure in the World

When a world program must track two independent pieces of information, we
must use a collection of structures to represent the world state data. One field
keeps track of one piece of information and the other field the second piece of
information. Naturally, if the domain world contains more than two independent
pieces of information, the structure type definition must specify as many fields
as there are distinct pieces of information.

Consider a space invader game that consists of a UFO and a tank. The UFO
descends along a straight vertical line and a tank moves horizontally at the
bottom of a scene. If both objects move at known constant speeds, all that’s
needed to describe these two objects is one piece of information per object: the
y-coordinate for the UFO and the x-coordinate for the tank. Putting those
together requires a structure with two fields:

(define-struct space-game [ufo tank])

We leave it to you to formulate an adequate data definition for this structure type
definition, including an interpretation. Ponder the hyphen in the name of the
structure. BSL really allows the use of all kinds of characters in the names of
variables, functions, structures, and field names. What are the selector names for
this structure? The name of the predicate?

Every time we say “piece of information,” we don’t necessarily mean a
single number or a single word. A piece of information may itself combine
several pieces of information. Creating a data representation for that kind of
information naturally leads to nested structures.

Let’s add a modicum of spice to our imaginary space invader game. A UFO
that descends only along a vertical line is boring. To turn this idea into an
interesting game where the tank attacks the UFO with some weapon, the UFO
must be able to descend in nontrivial lines, perhaps jumping randomly. An
implementation of this idea means that we need two coordinates to describe the
location of the UFQO, so that our revised data definition for the space game
becomes:

; A SpaceGame is a structure:
; (make-space-game Posn Number).

; interpretation (make-space-game (make-posn ux uy) tx)
; describes a configuration where the UFO is
; at (ux,uy) and the tank's x-coordinate is tx

Understanding what kind of data representations are needed for world
programs takes practice. The following two sections introduce several
reasonably complex problem statements. Solve them before moving on to the
kind of games that you might like to design on your own.

5.10 A Graphical Editor

To program in BSL, you open DrRacket, type on the keyboard, and watch text
appear. Pressing the left arrow on the keyboard moves the cursor to the left;
pressing the backspace (or delete) key erases a single letter to the left of the
cursor—if there is a letter to start with.

This process is called “editing,” though its precise name should be “text
editing of programs” because we will use “editing” for a more demanding task
than typing on a keyboard. When you write and revise other kinds of documents,
say, an English assignment, you are likely to use other software applications,
called word processors, though computer scientists dub all of them editors or
even graphical editors.

You are now in a position to design a world program that acts as a one-line
editor for plain text. Editing here includes entering letters and somehow
changing the already existing text, including the deletion and the insertion of
letters. This implies some notion of position within the text. People call this
position a cursor; most graphical editors display it in such a way that it can
easily be spotted.

Take a look at the following editor configuration:

helloworld

Someone might have entered the text “helloworld” and hit the left arrow key
five times, causing the cursor to move from the end of the text to the position
between “0” and “w.” Pressing the space bar would now cause the editor to
change its display as follows:

hello world

€€

In short, the action inserts “” and places the cursor between it and “w.”
Given this much, an editor must track two pieces of information:

1. the text entered so far, and

2. the current location of the cursor.

And this suggests a structure type with two fields.

We can imagine several different ways of going from the information to data
and back. For example, one field in the structure may contain the entire text
entered, and the other the number of characters between the first character
(counting from the left) and the cursor. Another data representation is to use two
strings in the two fields: the part of the text to the left of the cursor and the part
of the text to its right. Here is our preferred approach to representing the state of
an editor:

(define-struct editor [pre post])

; An Editor is a structure:

; (make-editor String String)

; interpretation (make-editor s t) describes an editor
; whose visible text is (string-append s t) with

; the cursor displayed between s and t

Solve the next few exercises based on this data representation.

Exercise 83. Design the function render, which consumes an Editor and
produces an image.

The purpose of the function is to render the text within an empty scene of
200 x 20 pixels. For the cursor, use a 1 x 20 red rectangle and for the strings,
black text of size 16.

Develop the image for a sample string in DrRacket’s interactions area. We
started with this expression:

(overlay/align "left" "center"
(text "hello world"™ 11 "black")
(empty-scene 200 20))

You may wish to read up on beside, above, and such functions. When you are
happy with the looks of the image, use the expression as a test and as a guide to
the design of render.

Exercise 84. Design edit. The function consumes two inputs, an editor ed
and a KeyEvent ke, and it produces another editor. Its task is to add a single-
character KeyEvent ke to the end of the pre field of ed, unless ke denotes the
backspace ("\b") key. In that case, it deletes the character immediately to the left
of the cursor (if there are any). The function ignores the tab key ("\t") and the

return key ("\r").

The function pays attention to only two KeyEvents longer than one letter:
"left" and "right". The left arrow moves the cursor one character to the left (if
any), and the right arrow moves it one character to the right (if any). All other
such KeyEvents are ignored.

Develop a goodly number of examples for edit, paying attention to special
cases. When we solved this exercise, we created 20 examples and turned all of
them into tests.

Hint Think of this function as consuming KeyEvents, a collection that is
specified as an enumeration. It uses auxiliary functions to deal with the Editor
structure. Keep a wish list handy; you will need to design additional functions
for most of these auxiliary functions, such as string-first, string-rest,
string-last, and string-remove-last. If you haven’t done so, solve the
exercises in chapter 2.1.1

Exercise 85. Define the function run. Given the pre field of an editor, it
launches an interactive editor, using render and edit from the preceding two
exercises for the to-draw and on-key clauses, respectively. 1

Exercise 86. Notice that if you type a lot, your editor program does not
display all of the text. Instead the text is cut off at the right margin. Modify your
function edit from exercise 84 so that it ignores a keystroke if adding it to the
end of the pre field would mean the rendered text is too wide for your canvas. 1

Exercise 87. Develop a data representation for an editor based on our first
idea, using a string and an index. Then solve the preceding exercises again.
Retrace the design recipe. Hint if you haven’t done so, solve the exercises in
chapter 2.1.

Note on Design Choices The exercise is a first study of making design
choices. It shows that the very first design choice concerns the data
representation. Making the right choice requires planning ahead and weighing
the complexity of each. Of course, getting good at this is a question of gaining
experience. 1

5.11 More Virtual Pets

In this section we continue our virtual zoo project from chapter 3.7. Specifically,
the goal of the exercise is to combine the cat world program with the program
for managing its happiness gauge. When the combined program runs, you see
the cat walking across the canvas, and, with each step, its happiness goes down.
The only way to make the cat happy is to feed it (down arrow) or to pet it (up
arrow). Finally, the goal of the last exercise in this section is to create another
virtual, happy pet.

Exercise 88. Define a structure type that keeps track of the cat’s x-
coordinate and its happiness. Then formulate a data definition for cats, dubbed
VCat, including an interpretation. 1

Exercise 89. Design the happy-cat world program, which manages a
walking cat and its happiness level. Let’s assume that the cat starts out with
perfect happiness.

Hints (1) Reuse the functions from the world programs in chapter 3.7. (2)
Use structure type from the preceding exercise to represent the state of the
world. 1

Exercise 90. Modify the happy-cat program from the preceding exercises so
that it stops whenever the cat’s happiness falls to 0.1

Exercise 91. Extend your structure type definition and data definition from
exercise 88 to include a direction field. Adjust your happy-cat program so that
the cat moves in the specified direction. The program should move the cat in the
current direction, and it should turn the cat around when it reaches either end of
the scene. 1

(define cham

The above drawing of a chameleon is a transparent image. To insert it into
DrRacket, insert it with the “Insert Image” menu item. Using this instruction
preserves the transparency of the drawing’s pixels.

When a partly transparent image is combined with a colored shape, say a
rectangle, the image takes on the underlying color. In the chameleon drawing, it
is actually the inside of the animal that is transparent; the area outside is solid
white. Try out this expression in your DrRacket:

(define background
(rectangle (image-width cham)
(1mage—height cham)
"solid"
"red"))

(overlay cham background)

Exercise 92. Design the cham program, which has the chameleon
continuously walking across the canvas from left to right. When it reaches the
right end of the canvas, it disappears and immediately reappears on the left. Like
the cat, the chameleon gets hungry from all the walking, and, as time passes by,
this hunger expresses itself as unhappiness.

For managing the chameleon’s happiness gauge, you may reuse the
happiness gauge from the virtual cat. To make the chameleon happy, you feed it
(down arrow, two points only); petting isn’t allowed. Of course, like all
chameleons, ours can change color, too: "r" turns it red, "b" blue, and "g"
green. Add the chameleon world program to the virtual cat game and reuse
functions from the latter when possible.

Start with a data definition, VCham, for representing chameleons. 1

Exercise 93. Copy your solution to exercise 92 and modify the copy so that
the chameleon walks across a tricolor background. Our solution uses these
colors:

(define BACKGROUND
(beside (empty-scene WIDTH HEIGHT "green")
(empty-scene WIDTH HEIGHT "white")
(empty—scene WIDTH HEIGHT "red")))

but you may use any colors. Observe how the chameleon changes colors to blend
in as it crosses the border between two colors.

Have some Italian pizza when you’re done.

Note When you watch the animation carefully, you see the chameleon riding
on a white rectangle. If you know how to use image editing software, modify the
picture so that the white rectangle is invisible. Then the chameleon will really
blend in.

6 Itemizations and Structures

The preceding two chapters introduce two ways of formulating data definitions.
Those that employ itemization (enumeration and intervals) are used to create
small collections from large ones. Those that use structures combine multiple
collections. Since the development of data representations is the starting point
for proper program design, it cannot surprise you that programmers frequently
want to itemize data definitions that involve structures or to use structures to
combine itemized data.

Recall the imaginary space invader game from chapter 5.9 in the preceding
chapter. Thus far, it involves one UFO, descending from space, and one tank on
the ground, moving horizontally. Our data representation uses a structure with
two fields: one for the data representation of the UFO and another one for the
data representation of the tank. Naturally, players will want a tank that can fire
off a missile. All of a sudden, we can think of a second kind of state that
contains three independently moving objects: the UFO, the tank, and the missile.
Thus we have two distinct structures: one for representing two independently
moving objects and another one for the third. Since a world state may now be
one of these two structures, it is natural to use an itemization to describe all
possible states:

1. the state of the world is a structure with two fields, or
2. the state of the world is a structure with three fields.

As far as our domain is concerned—the actual game—the first kind of state
represents the time before the tank has launched its sole missile and the second
one the time after the missile has been fired.

No worries, the next part of the book is about firing as many missiles as you want, without reloading.

This chapter introduces the basic idea of itemizing data definitions that
involve structures. Because we have all the other ingredients we need, we start
straight with itemizing structures. After that, we discuss some examples,
including world programs that benefit from our new power. The last section is

about errors in programming.

6.1 Designing with Itemizations, Again

Let’s start with a refined problem statement for our space invader game from
chapter 5.6.

Sample Problem Design a game program using the
2htdp/universe library for playing a simple space invader game.
The player is in control of a tank (a small rectangle) that must
defend our planet (the bottom of the canvas) from a UFO (see
chapter 4.4 for one possibility) that descends from the top of the
canvas to the bottom. In order to stop the UFO from landing, the
player may fire a single missile (a triangle smaller than the tank)
by hitting the space bar. In response, the missile emerges from the
tank. If the UFO collides with the missile, the player wins;
otherwise the UFO lands and the player loses.

Here are some details concerning the three game objects and their
movements. First, the tank moves a constant speed along the
bottom of the canvas, though the player may use the left arrow
key and the right arrow key to change directions. Second, the
UFO descends at a constant velocity but makes small random
jumps to the left or right. Third, once fired, the missile ascends
along a straight vertical line at a constant speed at least twice as
fast as the UFO descends. Finally, the UFO and the missile
collide if their reference points are close enough, for whatever
you think “close enough” means.

The following two subsections use this sample problem as a running
example, so study it well and solve the following exercise before you continue.
Doing so will help you understand the problem in enough depth.

Exercise 94. Draw some sketches of what the game scenery looks like at
various stages. Use the sketches to determine the constant and the wvariable
pieces of the game. For the former, develop physical and graphical constants that
describe the dimensions of the world (canvas) and its objects. Also develop
some background scenery. Finally, create your initial scene from the constants
for the tank, the UFO, and the background. 1

Defining Itemizations The first step in our design recipe calls for the

development of data definitions. One purpose of a data definition is to describe
the construction of data that represents the state of the world; another is to
describe all possible pieces of data that the event-handing functions of the world
program may consume. Since we haven’t seen itemizations that include
structures, this first subsection introduces this idea. While this probably won’t
surprise you, pay close attention.

For this space invader game, we could get away with one structure type definition of three fields
where the third field contains #false until the missile is fired, and a Posn for the missile’s

coordinates thereafter. See below.

As argued in the introduction to this chapter, the space invader game with a
missile-firing tank requires a data representation for two different kinds of game
states. We choose two structure type definitions:

(define-struct aim [ufo tank])

(define-struct fired [ufo tank missile])

The first one is for the time period when the player is trying to get the tank in
position for a shot, and the second one is for representing states after the missile
is fired. Before we can formulate a data definition for the complete game state,
however, we need data representations for the tank, the UFO, and the missile.

Assuming constant definitions for such physical constants as WIDTH and
HEIGHT, which are the subject of exercise 94, we formulate the data definitions
like this:

; A UFO is a Posn.
; interpretation (make-posn x y) is the UFO's location
; (using the top-down, left-to-right convention)

(define-struct tank [loc vel])

; A Tank is a structure:

; (make-tank Number Number).

; interpretation (make-tank x dx) specifies the position:
; (X, HEIGHT) and the tank's speed: dx pixels/tick

; A Missile is a Posn.
; interpretation (make-posn x y) is the missile's place

Each of these data definitions describes nothing but a structure, either a newly
defined one, tank, or a built-in data collection, Posn. Concerning the latter, it
may surprise you a little bit that Posns are used to represent two distinct aspects
of the world. Then again, we have used numbers (and strings and Boolean
values) to represent many different kinds of information in the real world, so
reusing a collection of structures such as Posn isn’t a big deal.

Now we are in a position to formulate the data definitions for the state of the
space invader game:

A SIGS is one of:

-- (make-aim UFO Tank)

-- (make-fired UFO Tank Missile)

interpretation represents the complete state of a
space invader game

N= N= N= N= N=

The shape of the data definition is that of an itemization. Each clause, however,
describes the content of a structure type, just like the data definition for structure
types we have seen so far. Still, this data definition shows that not every data
definition comes with exactly one structure type definition; here one data
definition involves two distinct structure type definitions.

The meaning of such a data definition is also straightforward. It introduces
the name SIGS for the collection of all those structure instances that you can
create according to the definition. So let us create some:

* Here is an instance that describes the tank maneuvering into position to fire
the missile:

(make-aim (make-posn 20 10) (make-tank 28 -3))
 This one is just like the previous one but the missile has been fired:

(make—-fired (make-posn 20 10)
(make—-tank 28 -3)
(make-posn 28 (— HEIGHT TANK-HEIGHT)))

Of course, the capitalized names refer to the physical constants that you
defined.

+ Finally, here is one where the missile is about to collide with the UFO:

(make-fired (make-posn 20 100)
(make—-tank 100 3)
(make-posn 22 103))

This example assumes that the canvas is more than 100 pixels tall.

Notice that the first instance of SIGS is generated according to the first clause of
the data definition, and the second and third follow the second clause. Naturally
the numbers in each field depend on your choices for global game constants.
Exercise 95. Explain why the three instances are generated according to the
first or second clause of the data definition.
Exercise 96. Sketch how each of the three game states could be rendered
assuming a 200 % 200 canvas. 1

The Design Recipe With a new way of formulating data definitions comes
an inspection of the design recipe. This chapter introduces a way to combine two
or more means of describing data, and the revised design recipe reflects this,
especially the first step:

1. When do you need this new way of defining data? You already know that
the need for itemizations is due to distinctions among different classes of
information in the problem statement. Similarly, the need for structure-
based data definitions is due to the demand to group several different
pieces of information.

An itemization of different forms of data—including collections of
structures—is required when your problem statement distinguishes
different kinds of information and when at least some of these pieces of
information consist of several different pieces.

One thing to keep in mind is that data definitions may refer to other data
definitions. Hence, if a particular clause in a data definition looks overly
complex, it is acceptable to write down a separate data definition for this
clause and refer to this auxiliary definition.

And, as always, formulate data examples using the data definitions.

2. The second step remains the same. Formulate a function signature that
mentions only the names of defined or built-in data collections, add a
purpose statement, and create a function header.

3. Nothing changes for the third step. You still need to formulate functional
examples that illustrate the purpose statement from the second step, and
you still need one example per item in the itemization.

4. The development of the template now exploits two different dimensions:
the itemization itself and the use of structures in its clauses.

By the first, the body of the template consists of a cond expression that has
as many cond clauses as the itemizations has items. Furthermore, you must
add a condition to each cond clause that identifies the sub-class of data in
the corresponding item.

By the second, if an item deals with a structure, the template contains the
selector expressions—in the cond clause that deals with the sub-class of
data described in the item.

When you choose to describe the data with a separate data definition,
however, you do not add selector expressions. Instead, you create a
template for the separate data definition to the task at hand and refer to that
template with a function call. The latter indicates that this sub-class of data
is being processed separately.

Before going through the work of developing a template, briefly reflect
on the nature of the function. If the problem statement suggests that there
are several tasks to be performed, it is likely that a composition of several,
separately designed functions is needed instead of a template. In that case,
skip the template step.

5. Fill the gaps in the template. The more complex you make your data
definitions, the more complex this step becomes. The good news is that
this design recipe can help in many situations.

If you are stuck, fill the easy cases first and use default values for the
others. While this makes some of the test cases fail, you are making
progress and you can visualize this progress.

If you are stuck on some cases of the itemization, analyze the examples
that correspond to those cases. Determine what the pieces of the template
compute from the given inputs. Then consider how to combine these
pieces (plus some constants) to compute the desired output. Keep in mind
that you might need an auxiliary function.

Also, if your template “calls” another template because the data definitions
refer to each other, assume that the other function delivers what its purpose
statement and its examples promise—even if this other function’s
definition isn’t finished yet.

6. Test. If tests fail, determine what’s wrong: the function, the tests, or both.
Go back to the appropriate step.

Go back to chapter 3.1, reread the description of the simple design recipe, and
compare it to this revision.

Let’s illustrate the design recipe with the design of a rendering function for
the sample problem at the beginning of this section. Recall that a big-bang
expression needs such a rendering function to turn the state of the world into an
image after every clock tick, mouse click, or keystroke.

The signature of this rendering function says that it maps an element of the
state-of-the-world class to the class of Images:

; SIGS -> Image

; adds TANK, UFO, and possibly MISSILE to
; the BACKGROUND scene

(define (si-render s) BACKGROUND)

Here TANK, UFO, MISSILE, and BACKGROUND are the requested image constants
from exercise 94. Recall that this signature is just an instance of the general
signature for rendering functions, which always consume the collections of
world states and produce some image.

Since the itemization in the data definition consists of two items, let’s make
three examples, using the data examples from above. See figure 32. Unlike the
function tables found in mathematics books, this table is rendered vertically. The
left column contains sample inputs for our desired function; the right column
lists the corresponding desired results. As you can see, we used the data
examples from the first step of the design recipe, and they cover both items of

the itemization.

S (si-render s)

(make—-aim
(make-posn 10 20)
(make-tank 28 -3)) |

(make—-fired
(make—-posn 20 100)
(make-tank 100 3) A
(make-posn 22 103)) L .

(make-fired
(make-posn 10 20)
(make-tank 28 -3)
(make-posn 32 (- HEIGHT TANK-HEIGHT 10))) |

Figure 32: Rendering space invader game states, by example

Next we turn to the development of the template, the most important step of
the design process. First, we know that the body of si-render must be a cond
expression with two cond clauses. Following the design recipe, the two
conditions are (aim? s) and (fired? s), and they distinguish the two possible
kinds of data that si-render may consume:

(define (si-render s)
(cond
[(aim? s) ...]
[(fired? s) ...1))

Second, we add selector expressions to every cond clause that deals with
structures. In this case, both clauses concern the processing of structures: aim
and fired. The former comes with two fields and thus requires two selector
expressions for the first cond clause, and the latter kind of structures consists of
three values and thus demands three selector expressions:

(define (si-render s)

(cond
[(aim? s) (... (aim-tank s) ... (aim-ufo s) ...)]
[(fired? s) (... (fired-tank s) ... (fired-ufo s)

(fired—-missile s) ...)]))

The template contains nearly everything we need to finish our task. To
complete the definition, we figure out for each cond line how to combine the
values we have in order to compute the expected result. Beyond the pieces of the
input, we may also use globally defined constants, for example, BACKGROUND,
which is obviously of help here; primitive or built-in operations; and, if all else
fails, wish-list functions, that is, we describe functions we wish we had.

Consider the first cond clause, where we have a data representation of a tank,
that is, (aim-tank s), and the data representation of a UFQO, that is, (aim-ufo
s). From the first example in figure 32, we know that we need to add the two
objects to the background scenery. In addition, the design recipe suggests that if
these pieces of data come with their own data definition, we are to consider
defining helper (auxiliary) functions and to use those to compute the result:

(tank—-render (aim—-tank s)
(ufo-render (aim—-ufo s) BACKGROUND))

Here tank-render and ufo-render are wish-list functions:

; Tank Image -> Image
; adds t to the given image im
(define (tank-render t im) im)

; UFO Image -> Image

; adds u to the given image im
(define (ufo-render u im) 1im)

With a bit of analogy, we can deal with the second cond clause in the same
way. Figure 33 shows the complete definition. Best of all, we can immediately
reuse our wish-list functions, tank-render and ufo-render, and all we need to
add is a function for including a missile in the scene. The appropriate wish-list
entry is:

; Missile Image -> Image

; adds m to the given image im
(define (missile-render m im) im)

As above, the comment describes in sufficient detail what we want.

; SIGS -> Image
; renders the given game state on top of BACKGROUND
; for examples see figure 32
(define (si-render s)
(cond
[(aim? s)
(tank-render (aim-tank s)
(ufo-render (aim-ufo s) BACKGROUND))]
[(fired? s)
(tank—-render
(fired-tank s)
(ufo-render (fired-ufo s)
(missile-render (fired-missile s)
BACKGROUND))) 1))

Figure 33: The complete rendering function

Exercise 97. Design the functions tank-render, ufo-render, and missile-
render. Compare this expression:

(tank—render
(fired-tank s)
(ufo-render (fired-ufo s)
(missile-render (fired-missile s)
BACKGROUND)))

with this one:

(ufo-render
(fired-ufo s)
(tank—-render (fired-tank s)
(missile-render (fired-missile s)
BACKGROUND)))

When do the two expressions produce the same result? 1

Exercise 98. Design the function si-game-over? for use as the stop-when
handler. The game stops if the UFO lands or if the missile hits the UFO. For
both conditions, we recommend that you check for proximity of one object to
another.

The stop-when clause allows for an optional second sub-expression, namely
a function that renders the final state of the game. Design si-render-final and
use it as the second part for your stop-when clause in the main function of
exercise 100.1

Exercise 99. Design si-move. This function is called for every clock tick to
determine to which position the objects move now. Accordingly, it consumes an
element of SIGS and produces another one.

Moving the tank and the missile (if any) is relatively straightforward. They
move in straight lines at a constant speed. Moving the UFO calls for small
random jumps to the left or the right. Since you have never dealt with functions
that create random numbers, the rest of this exercise is a longish hint on how to
deal with this issue.

BSL comes with a function that creates random numbers. Introducing this
function illustrates why the signatures and purpose statements play such an
important role during the design. Here is the relevant material for the function
you need:

; Number -> Number
; produces a number in the interval [0,n),

; possibly a different one each time it is called
(define (random n) ..)

Since the signature and purpose statement precisely describe what a function
computes, you can now experiment with random in DrRacket’s interactions area.
Stop! Do so!

If random produces different numbers (almost) every time it is called, testing
functions that use random is difficult. To start with, separate si-move and its
proper functionality into two parts:

The idea that you must use random is BSL knowledge, not a part of the design skills you must acquire,
which is why we provide this hint. Also, random is the first and only BSL primitive that is not a
mathematical function. Functions in programming are inspired by mathematical functions, but they
are not identical concepts.

(define (si-move w)
(si-move-proper w (random ..)))

; SIGS Number -> SIGS
; moves the space-invader objects predictably by delta

(define (si-move-proper w delta)
W)

With this definition you separate the creation of a random number from the act
of moving the game objects. While random may produce different results every
time it is called, si-move-proper can be tested on specific numeric inputs and is
thus guaranteed to return the same result when given the same inputs. In short,
most of the code remains testable.

Instead of calling random directly, you may wish to design a function that
creates a random x-coordinate for the UFO. Consider using check-random from
BSL’s testing framework to test such a function.

Exercise 100. Design the function si-control, which plays the role of the
key-event handler. As such, it consumes a game state and a KeyEvent and
produces a new game state. It reacts to three different keys:

+ pressing the left arrow ensures that the tank moves left;
* pressing the right arrow ensures that the tank moves right; and
* pressing the space bar fires the missile if it hasn’t been launched yet.

Once you have this function, you can define the si-main function, which
uses big-bang to spawn the game-playing window. Enjoy! 1

Data representations are rarely unique. For example, we could use a single
structure type to represent the states of a space invader game:

(define-struct sigs [ufo tank missile])
i A SIGS.v2 (short for SIGS version2) is a structure:
; (make-sigs UFO Tank MissileOrNot)

; interpretation represents the complete state of a
; Space invader game

; A MissileOrNot is one of:

; -- #false

; -- Posn

; interpretation#false means the missile is in the tank;
; Posn says the missile is at that location

Unlike the first data representation for game states, this second version does not
distinguish between before and after the missile launch. Instead, each state
contains some data about the missile though this piece of data may just be
#false, indicating that the missile hasn’t been fired yet.

As a result, the functions for this second data representation of states differ
from the functions for the first one. In particular, functions that consume an
element of SIGS.v2 do not use a cond expression because there is only one kind
of element in the collection. In terms of design approach, the design recipe for
structures from chapter 5.8 suffices. Figure 34 shows the result of designing the
rendering function for this data representation.

; SIGS.v2 -> Image
; renders the given game state on top of BACKGROUND
(define (si-render.v2 s)
(tank-render
(sigs-tank s)
(ufo-render (sigs-ufo s)
(missile-render.v2 (sigs-missile s)
BACKGROUND))))

Figure 34: Rendering game states again

In contrast, the design of functions using MissileOrNot requires the recipe
from this section. Let’s look at the design of missile-render.v2, whose job it is
to add a missile to an image. Here is the header material:

; MissileOrNot Image -> Image
; adds an image of missile m to scene s
(define (missile-render.v2 m s)

s)

As for examples, we must consider at least two cases: one when m is #false
and another one when m is a Posn. In the first case, the missile hasn’t been fired,

which means that no image of a missile is to be added to the given scene. In the
second case, the missile’s position is specified and that is where the image of the
missile must show up. Figure 35 demonstrates the workings of the function with
two distinct scenarios.

m (missile-render.v2 m s)

#false |
(make-posn
32
(- HEIGHT
TANK-HEIGHT
10)) L__|

Figure 35: Rendering the space invader games, with tanks

Exercise 101. Turn the examples in figure 35 into test cases. 1

Now we are ready to develop the template. Because the data definition for
the major argument (m) is an itemization with two items, the function body is
likely to consist of a cond expression with two clauses:

(define (missile-render.v2 m s)
(cond
[(boolean? m) ..]

[(posn? m) ..]))

Following the data definition again, the first cond clause checks whether m is a
Boolean value and the second one checks whether it is an element of Posn. And,
if someone were to accidentally apply missile-render.v2 to #true and to some
image, the function would use the first cond clause to compute the result. We
have more to say on such errors below.

The second template step requests selector expressions in all those cond
clauses that deal with structures. In our example, this is true for the second
clause, and the selector expressions extract the x-and y-coordinates from the
given Posn:

(define (missile-render.v2 m s)

(cond
[(boolean? m) ..]

[(posn? m) (.. (posn-x m) .. (posn-y m) ..)]))

Compare this template with the one for si-render above. The data definition for
the latter deals with two distinct structure types, and therefore the function
template for si-render contains selector expressions in both cond clauses. The
data definition for MissileOrNot, however, mixes items that are plain values
with items that describe structures. Both kinds of definitions are perfectly fine;
the key for you is to follow the recipe and to find a code organization that
matches the data definition.
Here is the complete function definition:

(define (missile-render.v2 m s)
(cond
[(boolean? m) s]
[(posn? m) (place-image MISSILE (posn-x m) (posn-y m) s)]))

Doing this step-by-step, you first work on the easy clauses; in this function that’s
the first one. Since it says the missile hasn’t been fired, the function returns the
given s. For the second clause, you need to remember that (posn-x m) and
(posn-y m) select the coordinates for the image of the missile. This function
must add MISSILE to s, so you have to figure out the best combination of
primitive operations and your own functions to combine the four values. The
choice of this combining operation is precisely where your creative insight as a
programmer comes into play.

Exercise 102. Design all other functions that are needed to complete the
game for this second data definition. 1

Exercise 103. Develop a data representation for the following four kinds of
z0o animals:

+ spiders, whose relevant attributes are the number of remaining legs (we
assume that spiders can lose legs in accidents) and the space they need in
case of transport;

 elephants, whose only attributes are the space they need in case of
transport;

* boa constrictors, whose attributes include length and girth; and

 armadillos, for which you must determine appropriate attributes, including
one that determines the space needed for transport.

Develop a template for functions that consume zoo animals.

Design the fits? function, which consumes a zoo animal and a description
of a cage. It determines whether the cage’s volume is large enough for the
animal. 1

Exercise 104. Your home town manages a fleet of vehicles: automobiles,
vans, buses, and SUVs. Develop a data representation for vehicles. The
representation of each vehicle must describe the number of passengers that it can
carry, its license plate number, and its fuel consumption (miles per gallon).
Develop a template for functions that consume vehicles. 1

Exercise 105. Some program contains the following data definition:

; A Coordinate is one of:

; -- a NegativeNumber

; interpretation on the y axis, distance from top
; -- a PositiveNumber

; interpretation on the x axis, distance from left
; -- a Posn

; interpretation an ordinary Cartesian point

Make up at least two data examples per clause in the data definition. For each of
the examples, explain its meaning with a sketch of a canvas. 1

6.2 Mixing Up Worlds

This section suggests several design problems for world program, starting with
simple extension exercises concerning our virtual pets.

Exercise 106. In chapter 5.11 we discussed the creation of virtual pets that
come with happiness gauges. One of the virtual pets is a cat; the other one, a
chameleon. Each program is dedicated to a single pet, however.

Design the cat-cham world program. Given both a location and an animal, it
walks the latter across the canvas, starting from the given location. Here is the
chosen data representation for animals:

; A VAnimal is either
; -- a VCat
; -- a VCham

where VCat and VCham are your data definitions from exercises 88 and 92.
Given that VAnimal is the collection of world states, you need to design

+ arendering function from VAnimal to Image;
+ a function for handling clock ticks, from VAnimal to VAnimal; and

* a function for dealing with key events so that you can feed and pet and
colorize your animal—as applicable.

It remains impossible to change the color of a cat or to pet a chameleon. 1
Exercise 107. Design the cham-and-cat program, which deals with both a
virtual cat and a virtual chameleon. You need a data definition for a “zoo”
containing both animals and functions for dealing with it.
The problem statement leaves open how keys manipulate the two animals.
Here are two possible interpretations:

1. Each key event goes to both animals.

2. Each key event applies to only one of the two animals.

For this alternative, you need a data representation that specifies a focus

animal, that is, the animal that can currently be manipulated. To switch
focus, have the key-handling function interpret "k" for “kitty” and "1" for
lizard. Once a player hits "k", the following keystrokes apply to the cat
only—until the player hits "1".

Choose one of the alternatives and design the appropriate program.

Exercise 108. In its default state, a pedestrian crossing light shows an orange
person standing on a red background. When it is time to allow the pedestrian to
cross the street, the light receives a signal and switches to a green, walking
person. This phase lasts for 10 seconds. After that the light displays the digits 9,
8, --+, 0 with odd numbers colored orange and even numbers colored green.
When the countdown reaches 0, the light switches back to its default state.

Design a world program that implements such a pedestrian traffic light. The
light switches from its default state when you press the space bar on your
keyboard. All other transitions must be reactions to clock ticks. You may wish to
use the following images

or you can make up your own stick figures with the image library.

Exercise 109. Design a world program that recognizes a pattern in a
sequence of KeyEvents. Initially the program shows a 100 by 100 white
rectangle. Once your program has encountered the first desired letter, it displays
a yellow rectangle of the same size. After encountering the final letter, the color
of the rectangle turns green. If any “bad” key event occurs, the program displays
a red rectangle.

The specific sequences that your program looks for start with "a", followed
by an arbitrarily long mix of "b" and "c", and ended by a "d". Clearly, "acbd" is
one example of an acceptable string; two others are "ad" and "abcbbbcd". Of
course, "da", "aa", or "d" do not match.

Hint Your solution implements a finite state machine (FSM), an idea
introduced in chapter 4.7 as one design principle behind world programs. As the
name says, an FSM program may be in one of a finite number of states. The first
state is called an initial state. Each key event causes the machine to reconsider

its current state; it may transition to the same state or to another one. When your
program recognizes a proper sequence of key events, it transitions to a final
state.

The data definition on the right uses the naming technique introduced in exercise 61.

For a sequence-recognition problem, states typically represent the letters that
the machine expects to see next; see figure 36 for a data definition. Take a look
at the last state, which says an illegal input has been encountered. Figure 37
shows how to think of these states and their relationships in a diagrammatic
manner. Each node corresponds to one of the four finite states; each arrow
specifies which KeyEvent causes the program to transition from one state to
another.

conventional defined abbreviations
; ExpectsToSee.vl is one of: ; ExpectsToSee.v2 is one of:
; —— "start, expect an 'a'" ; —— AA
; —— "expect 'b', 'c¢', or 'd'™ ; -- BB
; —— "finished" ; == DD
; —— "error, illegal key" ; —— ER
define AA "start, ...")

define DD "finished")

(
(define BB "expect ...")
(
(define ER "error, ...")

Figure 36: Two ways of writing a data definition for FSMs

e
g
BB

not 1b" "c" or "d"

» DD

Figure 37: A finite state machine as a diagram

History In the 1950s, Stephen C. Kleene, whom we would call a computer
scientist, invented regular expressions as a notation for the problem of
recognizing text patterns. For the above problem, Kleene would write

a (blc)* d

which means a followed by b or c arbitrarily often until d is encountered.

6.3 Input Errors

One central point of this chapter concerns the role of predicates. They are critical
when you must design functions that process mixes of data. Such mixes come up
naturally when your problem statement mentions many different kinds of
information, but they also come up when you hand your functions and programs
to others. After all, you know and respect your data definitions and function
signatures. You never know, however, what your friends and colleagues do, and
you especially don’t know how someone without knowledge of BSL and
programming uses your programs. This section therefore presents one way of
protecting programs from inappropriate inputs.

It is a form of self-delusion to expect that we always respect our own function signatures. Calling a
function on the wrong kind of data happens to the best of us. While many languages are like BSL and
expect programmers to check signatures on their own, others do so automatically at the cost of some
additional complexity.

Let’s demonstrate this point with a simple program, a function for computing
the area of a disk:

; Number -> Number
; computes the area of a disk with radius r

(define (area-of-disk r)
(* 3.14 (* r r)))

Our friends may wish to use this function for their geometry homework.
Unfortunately, when our friends use this function, they may accidentally apply it
to a string rather than a number. When that happens, the function stops the
program execution with a mysterious error message:

> (area-of-disk "my-disk")
*:expects a number as 1st argument, given "my-disk"

With predicates, you can prevent this kind of cryptic error message and signal an
informative error of your own choice.

Specifically, we can define checked versions of our functions, when we wish
to hand them to our friends. Because our friends may not know much BSL, we

must expect that they apply this checked function to arbitrary BSL wvalues:
numbers, strings, images, Posns, and so on. Although we cannot anticipate
which structure types will be defined in BSL, we know the rough shape of the
data definition for the collection of all BSL values. Figure 38 displays this shape
of this data definition. As discussed in chapter 5.7, the data definition for Any is
open-ended because every structure type definition adds new instances. These
instances may contain Any values again, which implies that the data definition
of Any must refer to itself—a scary thought at first.

; Any BSL value is one of:
; —— Number

; —— Boolean

—-— String

—-- Image

-- (make-posn Any Any)

Ne Ne Ne Ne Ne Ne

-- (make-tank Any Any)

Figure 38: The universe of BSL data

Based on this itemization, the template for a checked function has the
following rough shape:

; Any -> 727
(define (checked-f v)
(cond
[(number? v) ..]
[(boolean? v) ..]
[(string? v) ..]
[(image? v) ..]
[(posn? v) (..(posn-x V) .. (posn-y V) ..)]
; which selectors are needed in the next clause?
[(tank? v) ..]
w))

Of course, nobody can list all clauses of this definition; fortunately, that’s not

necessary. What we do know is that for all those values in the class of values for
which the original function is defined, the checked version must produce the
same results; for all others, it must signal an error.

Concretely, our sample function checked-area-of-disk consumes an
arbitrary BSL value and uses area-of-disk to compute the area of a disk if the
input is a number. It must stop with an error message otherwise; in BSL we use
the function error to accomplish this. The error function consumes a string and
stops the program:

(error "area-of-disk: number expected")

Hence the rough definition of checked-area-of-disk looks like this:

(define MESSAGE "area-of-disk: number expected")

(define (checked-area-of-disk v)
(cond
[(number? v) (area-of-disk v)]
[(boolean? v) (error MESSAGE)]
[(string? v) (error MESSAGE)]
[(image? v) (error MESSAGE)]
[(posn? v) (error MESSAGE)]

E(tank? v) (error MESSAGE)]
w))

The use of else helps us finish this definition in the natural way:

; Any -> Number
; computes the area of a disk with radius v,
; if v is a number
(define (checked-area-of-disk v)
(cond

[(number? v) (area-of-disk v)]
[else (error "area-of-disk: number expected")]))

And just to make sure we get what we want, let’s experiment:

> (checked-area-of-disk "my-disk")

area-of-disk:number expected

Writing checked functions is important if we distribute our programs for
others to use. Designing programs that work properly, however, is far more
important. This book focuses on the design process for proper program design,
and, to do this without distraction, we agree that we always adhere to data
definitions and signatures. At least, we almost always do so, and on rare
occasions we may ask you to design checked versions of a function or a
program.

Exercise 110. A checked version of area-of-disk can also enforce that the
arguments to the function are positive numbers, not just arbitrary numbers.
Modify checked-area-of-disk in this way. 1

Exercise 111. Take a look at these definitions:

(define-struct vec [x y])

; A vec 1is

; (make-vec PositiveNumber PositiveNumber)
; interpretation represents a velocity vector

Develop the function checked-make-vec, which is to be understood as a checked
version of the primitive operation make-vec. It ensures that the arguments to
make-vec are positive numbers. In other words, checked-make-vec enforces our
informal data definition. 1

Predicates You might wonder how you can design your own predicates.
After all, checked functions really seem to have this general shape:

; Any -> .
; checks that a is a proper input for function g
(define (checked-g a)

(cond

[(XYZ? a) (g a)]
[else (error "g: bad input")]))

where g itself is defined like this:

: XYZ -> .
(define (g some-x) ..)

We assume that there is a data definition labeled XYZ, and that (xyz? a)
produces #true when a is an element of XYZ and #false otherwise.

For area-of-disk, which consumes Numbers, number? is clearly the
appropriate predicate. In contrast, for some functions like missile-render from
above, we clearly need to define our own predicate because MissileOrNot is a
made-up, not a built-in, data collection. So let us design a predicate for
MissileOrNot.

We recall the signature for predicates:

; Any -> Boolean

; is a an element of the MissileOrNot collection
(define (missile-or-not? a) #false)

It is a good practice to use questions as purpose statements for predicates,
because applying a predicate is like asking a question about a value. The
question mark “?” at the end of the name also reinforces this idea; some people
may tack on “huh” to pronounce the name of such functions.

Making up examples is also straightforward:

(check-expect (missile-or-not? #false) #true)
(check-expect (missile-or-not? (make-posn 9 2)) #true)
(check-expect (missile-or-not? "yellow") #false)

The first two examples recall that every element of MissileOrNot is either
#false or some Posn. The third test says that strings aren’t elements of the
collection. Here are three more tests:

(check-expect (missile-or-not? #true) #false)
(check-expect (missile-or-not? 10) #false)
(check-expect (missile-or-not? empty-image) #false)

Explain the expected answers!

Since predicates consume all possible BSL values, their templates are just
like the templates for checked-f. Stop! Find the template and take a second look
before you read on.

As with checked functions, a predicate doesn’t need all possible cond lines.
Only those that might produce #true are required:

(define (missile-or-not? v)
(cond
[(boolean? v) ..]

[(posn? V) (.. (posn-x V) .. (posn-y v) ..)]
[else #false]))

All other cases are summarized via an else line that produces #false.
Given the template, the definition of missile-or-not? is a simple matter of
thinking through each case:

(define (missile-or-not? v)
(cond
[(boolean? v) (boolean=? #false v)]
[(posn? v) #true]
[else #false]))

Only #false is a legitimate MissileOrNot; #true isn’t. We express this idea with
(boolean=? #false v), but (false? v) would also do:

(define (missile-or-not? v)
(cond
[(false? v) #true]
[(posn? v) #true]
[else #false]))

Naturally all elements of Posn are also members of MissileOrNot, which
explains the #true in the second line.

Exercise 112. Reformulate the predicate now using an or expression. I

Exercise 113. Design predicates for the following data definitions from the
preceding section: SIGS, Coordinate (VAnimal.

To wrap up, let us mention key-event? and mouse-event? as two important
predicates that you may wish to use in your world programs. They check the
expected property, but you should check out their documentation to make sure
you understand what they compute.

6.4 Checking the World

In a world program, many things can go wrong. Although we just agreed to trust
that our functions are always applied to the proper kind of data, in a world
program we may juggle too many things at once to place that much trust in
ourselves. When we design a world program that takes care of clock ticks,
mouse clicks, keystrokes, and rendering, it is just too easy to get one of those
interplays wrong. Of course, going wrong doesn’t mean that BSL recognizes the
mistake immediately. For example, one of our functions may produce a result
that isn’t quite an element of your data representation for world states. At the
same time, big-bang accepts this piece of data and holds on to it, until the next
event takes place. It is only when the following event handler receives this
inappropriate piece of data that the program may fail. But it may get worse
because even the second and third and fourth event-handling step may actually
cope with inappropriate state values, and it all blows up much later in the
process.

To help with this kind of problem, big-bang comes with an optional check-
with clause that accepts a predicate for world states. If, for example, we chose to
represent all world states with Number, we could express this fact easily like
this:

(define (main s0O)
(big-bang sO .. [check-with number?] ..))

As soon as any event-handling function produces something other than a
number, the world stops with an appropriate error message.

A check-with clause is even more useful when the data definition is not just
a class of data with a built-in predicate like number? but something subtle such
as this interval definition:

; A UnitWorld is a number
; between 0 (inclusive) and 1 (exclusive).

In that case you want to formulate a predicate for this interval:

; Any -> Boolean
; 1s X between O (inclusive) and 1 (exclusive)

(check-expect (between-0-and-1? "a")
(check-expect (between-0-and-1? 1.2)
(check-expect (between-0-and-1? 0.2)
(check-expect (between-0-and-1? 0.0)
(check-expect (between-0-and-1? 1.0)

(define (between-0-and-1? Xx)

(and (number? x) (<= 0 x) (< x 1)))

#false)
#false)
#true)
#true)
#false)

With this predicate you can now monitor every single transition in your world

program:

(define (main sQ)
(big-bang s0

[check-with between-0-and-17]

.))

If any of the world-producing handlers creates a number outside of the interval,
or worse, a non-numeric-value, our program discovers this mistake immediately

and gives us a chance to fix the mistake.

Exercise 114. Use the predicates from exercise 113 to check the space
invader world program, the virtual pet program (exercise 106), and the editor

program (chapter 5.10). 1

6.5 Equality Predicates

An equality predicate is a function that compares two elements of the same
collection of data. Recall the definition of TrafficLight, which is the collection of
three strings: "red", "green", and "yellow". Here is one way to define the
light=27 function:

; TrafficLight TrafficLight -> Boolean
; are the two (states of) traffic lights equal

(check-expect (light=? "red" "red") #true)
(check-expect (light=? "red" '"green") #false)
(check-expect (light=? "green" "green") #true)
(check-expect (light=? "yellow" "yellow") #true)

(define (light=? a-value another-value)
(string=? a-value another-value))

When we click RUN, all tests succeed, but unfortunately other interactions
reveal conflicts with our intentions:

> (light=? "salad" '"greens")

#false

> (light=? "beans" 10)

string=?:expects a string as 2nd argument, given 10

Compare these interactions with other, built-in equality predicates:

> (boolean=? "#true" 10)
boolean=?:expects a boolean as 1st argument, given "#true"

Try (string=? 10 #true) and (= 20 "help") on your own. All of them signal
an error about being applied to the wrong kind of argument.

The case of characters matters; "red" is different from "Red" or "RED".

A checked version of light=? enforces that both arguments belong to

TrafficLight; if not, it signals an error like those that built-in equality predicates
issue. We call the predicate for TrafficLight light? for brevity:

; Any -> Boolean
; 1s the given value an element of TrafficLight
(define (light? x)
(cond
[(string? x) (or (string=7? "red" x)
(string=7? "green" x)
(string=7? "yellow" x))]
[else #false]))

Now we can wrap up the revision of 1ight=2? by just following our original
analysis. First, the function determines that the two inputs are elements of
TrafficLight; if not it uses error to signal the mistake:

(define MESSAGE
"traffic light expected, given some other value'")

; Any Any -> Boolean
; are the two values elements of TrafficLight and,
; 1f so, are they equal

(check-expect (light=? "red" "red") #true)
(check-expect (light=? "red" '"green") #false)
(check-expect (light=? "green" "green") #true)
(check-expect (light=? "yellow" "yellow") #true)

(define (light=? a-value another-value)
(if (and (light? a-value) (light? another-value))

(string=? a-value another-value)
(error MESSAGE)))

Exercise 115. Revise 1ight=2? so that the error message specifies which of
the two arguments isn’t an element of TrafficLight.
While it is unlikely that your programs will use 1ight=?, they ought to use

key=? and mouse=2, two equality predicates that we briefly mentioned at the end
of the last subsection. Naturally, key=? is an operation for comparing two
KeyEvents; similarly, mouse=? compares two MouseEvts. While both kinds of
events are represented as strings, it is important to realize that not all strings
represent key events or mouse events.

We recommend using key=2? in key-event handlers and mouse=? in mouse-
event handlers from now on. The use of key=? in a key-event handler ensures
that the function really compares strings that represent key events and not
arbitrary strings. As soon as, say, the function is accidentally applied to
"hello\n world", key=2 signals an error and thus informs us that something is
wrong.

7 Summary

In this first part of the book, you learned a bunch of simple but important
lessons. Here is a summary:

1. A good programmer designs programs. A bad programmer tinkers until
the program seems to work.

2. The design recipe has two dimensions. One concerns the process of
design, that is, the sequence of steps to be taken. The other explains how
the chosen data representation influences the design process.

3. Every well-designed program consists of many constant definitions,
structure type definitions, data definitions, and function definitions. For
batch programs, one function is the “main” function, and it typically
composes several other functions to perform its computation. For
interactive programs, the big-bang function plays the role of the main
function; it specifies the initial state of the program, an image-producing
output function, and at most three event handlers: one for clock ticks, one
for mouse clicks, and one for key events. In both kinds of programs,
function definitions are presented “top down,” starting with the main
function, followed by those functions mentioned in the main function, and
SO On.

4. Like all programming languages, Beginning Student Language comes with
a vocabulary and a grammar. Programmers must be able to determine
the meaning of each sentence in a language so that they can anticipate
how the program performs its computation when given an input. The
following intermezzo explains this idea in detail.

5. Programming languages, including BSL, come with a rich set of libraries
so that programmers don’t have to reinvent the wheel all the time. A
programmer should become comfortable with the functions that a library
provides, especially their signatures and purpose statements. Doing so
simplifies life.

6. A programmer must get to know the “tools” that a chosen programming
language offers. These tools are either part of the language—such as cond
or max—or they are “imported” from a library. In this spirit, make sure you
understand the following terms: structure type definition, function
definition, constant definition, structure instance, data definition, big-
bang, and event-handling function.

INTERMEZZO 1: BEGINNING STUDENT
[LANGUAGE

Part I deals with BSL as if it were a natural language. It introduces the “basic
words” of the language, suggests how to compose “words” into “sentences,” and
appeals to your knowledge of algebra for an intuitive understanding of these
“sentences.” While this kind of introduction works to some extent, truly
effective communication requires some formal study.

In many ways, the analogy of part I is correct. A programming language
does have a vocabulary and a grammar, though programmers use the word
syntax for these elements. A sentence in BSL is an expression or a definition.
The grammar of BSL dictates how to form these phrases. But not all
grammatical sentences are meaningful—neither in English nor in a programming
language. For example, the English sentence “the cat is round” is a meaningful
sentence, but “the brick is a car” makes no sense even though it is completely
grammatical. To determine whether a sentence is meaningful, we must know the
meaning of a language; programmers call this semantics.

Programmers must eventually understand these principles of computation, but they are
complementary to the principles of design.

This intermezzo presents BSL as if it were an extension of the familiar
language of arithmetic and algebra in middle school. After all, computation
starts with this form of simple mathematics, and we should understand the
connection between this mathematics and computing. The first three sections
present the syntax and semantics of a good portion of BSL. Based on this new
understanding of BSL, the fourth resumes our discussion of errors. The
remaining sections expand this understanding to the complete language; the last
one expands the tools for expressing tests.

BSL Vocabulary

Figure 39 introduces and defines BSL’s basic vocabulary. It consists of literal
constants, such as numbers or Boolean values; names that have meaning
according to BSL, for example, cond or +; and names to which programs can
give meaning via define or function parameters.

A name or a variable is a sequence of characters, not including a space or one
of the following: ™, "> () [1{} | ; #:

¢ A primitive is a name to which BSL assigns meaning, for example, + or
sqgrt.

* A variableis a name without preassigned meaning.
A valueis one of:

¢ Anumberisoneof: 1,-1,3/5,1.22,#11.22,0+11, and so on. The syntax
for BSL numbers is complicated because it accommodates a range of formats:
positive and negative numbers, fractions and decimal numbers, exact and
inexact numbers, real and complex numbers, numbers in bases other than
10, and more. Understanding the precise notation for numbers requires a
thorough understanding of grammars and parsing, which is out of scope for
this intermezzo.

e A Booleanisoneof: #true or #false.

* A string is one of: "", "he says \"hello world\" to you",
"doll", and so on. In general, it is a sequence of characters enclosed by
a pair of ".

* An imageisa png, jpg, tiff, and various other formats. We intentionally omit
a precise definition.

We use v, v—1, v—2 and the like when we wish to say “any possible value.”

Figure 39: BSL core vocabulary

Each of the explanations defines a set via a suggestive itemization of its
elements. Although it is possible to specify these collections in their entirety, we
consider this superfluous here and trust your intuition. Just keep in mind that
each of these sets may come with some extra elements.

BSL Grammar

Figure 40 shows a large part of the BSL grammar, which—in comparison to
other languages—is extremely simple. As to BSL’s expressive power, don’t let
the looks deceive you. The first action item, though, is to discuss how to read
such grammars. Each line with a = introduces a syntactic category; the best way
to pronounce = is as “is one of” and | as “or.” Wherever you see three dots,
imagine as many repetitions of what precedes the dots as you wish. This means,
for example, that a program is either nothing or a single occurrence of def-expr
or a sequence of two of them, or three, four, five, or however many. Since this
example is not particularly illuminating, let’s look at the second syntactic
category. It says that def is either

Reading a grammar aloud makes it sound like a data definition. One could indeed use grammars to
write down many of our data definitions.

(define (variable variable) expr)
because “as many as you wish” includes zero, or
(define (variable variable variable) expr)
which is one repetition, or
(define (variable variable variable variable) expr)

which uses two.

program = def-expr ...

def-expr = def

| expr
def = (define (variable variable variable ...) expr)
expr variable
value

(variable expr expr ...)
(cond [expr expr] ... [expr expr])
(

|

| (primitive expr expr ...)

\

|

\ cond [expr expr] ... [else expr])

Figure 40: BSL core grammar

The final point about grammars concerns the three “words” that come in a
distinct font: define, cond, and else. According to the definition of BSL
vocabulary, these three words are names. What the vocabulary definition does
not tell us is that these names have a pre-defined meaning. In BSL, these words
serve as markers that differentiate some compound sentences from others, and in
acknowledgment of their role, such words are called keywords.

Now we are ready to state the purpose of a grammar. The grammar of a
programming language dictates how to form sentences from the vocabulary of
the grammar. Some sentences are just elements of vocabulary. For example,
according to figure 40 42 is a sentence of BSL:

* The first syntactic category says that a program is a def-expr. Expressions
may refer to the definitions.

* The second one tells us that a def-expr is either a def or an expr.

 The last definition lists all ways of forming an expr, and the second one is
value.

Since we know from figure 39 that 42 is a value, we have confirmation.

In DrRacket, a program really consists of two distinct parts: the definitions area and the expressions
in the interactions area.

The interesting parts of the grammar show how to form compound sentences,

those built from other sentences. For example, the def part tells us that a
function definition is formed by using “(”, followed by the keyword define,
followed by another “(”, followed by a sequence of at least two variables,
followed by “)”, followed by an expr, and closed by a right parenthesis “)” that
matches the very first one. Note how the leading keyword define distinguishes
definitions from expressions.

Expressions (expr) come in six flavors: variables, constants, primitive
applications, (function) applications, and two varieties of conditionals. While the
first two are atomic sentences, the last four are compound sentences. Like
define, the keyword cond distinguishes conditional expressions from
applications.

Here are three examples of expressions: "all", x, and (f x). The first one
belongs to the class of strings and is therefore an expression. The second is a
variable, and every variable is an expression. The third is a function application,
because f and x are variables.

In contrast, these parenthesized sentences are not legal expressions: (f
define), (cond x), and ((f 2) 10). The first one partially matches the shape of
a function application but it uses define as if it were a variable. The second one
fails to be a correct cond expression because it contains a variable as the second
item and not a pair of expressions surrounded by parentheses. The last one is
neither a conditional nor an application because the first part is an expression.

Finally, you may notice that the grammar does not mention white space:
blank spaces, tabs, and newlines. BSL is a permissive language. As long as there
is some white space between the elements of any sequence in a program,
DrRacket can understand your BSL programs. Good programmers, however,
may not like what you write. These programmers use white space to make their
programs easily readable. Most importantly, they adopt a style that favors human
readers over the software applications that process programs (such as DrRacket).
They pick up this style from carefully reading code examples in books, paying
attention to how they are formatted.

Keep in mind that two kinds of readers study your BSL programs: people and DrRacket.

Exercise 116. Take a look at the following sentences:

1. x
2.(=y 2)
3.(= (=y z) 0)

Explain why they are syntactically legal expressions 1
Exercise 117. Consider the following sentences:

1. (3 + 4)
2. number?
3. (x)

Explain why they are syntactically illegal. 1
Exercise 118. Take a look at the following sentences:

1. (define (f x)x)
2. (define (f x)y)
3. (define (f x y) 3)

Explain why they are syntactically legal definitions 1
Exercise 119. Consider the following sentences:

1. (define (f "x") x)
2. (define (f x y z) (x))

Explain why they are syntactically illegal. 1
Exercise 120. Discriminate the legal from the illegal sentences:

1. (x)
2. (+ 1 (not x))

3.(+ 12 3)

Explain why the sentences are legal or illegal. Determine whether the legal ones
belong to the category expr or def.1

Note on Grammatical Terminology The components of compound
sentences have names. We have introduced some of these names on an informal
basis. Figure 41 provides a summary of the conventions.

; function application:
(function argument ... argument)

; function definition:
(define (function—-name parameter ... parameter)
function-body)

; conditional expression:
(cond
cond-clause

cond-clause)

; cond clause
[condition answer]

Figure 41: Syntactic naming conventions

In addition to the terminology of figure 41, we say function header for the
second component of a definition. Accordingly, the expression component is
called a function body. People who consider programming languages as a form
of mathematics use left-hand side for a header and right-hand side for the body.
On occasion, you also hear or read the term actual arguments for the arguments
in a function application. End

BSL Meaning
When you hit the return key on your keyboard and ask DrRacket to evaluate an
expression, it uses the laws of arithmetic and algebra to obtain a value. For the
variant of BSL treated so far, figure 39 defines grammatically what a value is—
the set of values is just a subset of all expressions. The set includes Booleans,
Strings, and Images.

The rules of evaluation come in two categories. An infinite number of rules,
like those of arithmetic, explain how to determine the value of an application of
a primitive operation to values:

(+11) ==
(- 21) ==

Remember == says that two expressions are equal according to the laws of
computation in BSL. But BSL arithmetic is more general than just number
crunching. It also includes rules for dealing with Boolean values, strings, and so
on:

(not #true) == $#false

(string=? "a" "a") == #true
g

And, like in algebra, you can always replace equals with equals; see figure 42 for
a sample calculation.

boolean? #false)
== f#true

(boolean? (= (string-length (string-append "h" "w"))
(== 1 3) P
T;oolean? (= (string-length (string—append "h" "w")) 4))
T;oolean? (= (string-length "hw") 4))
T;oolean? (= 2 4))
(

Figure 42: Replacing equals by equals

Second, we need a rule from algebra to understand the application of a
function to arguments. Suppose the program contains the definition

(define (f x-1 .. x-n)
f-body)

Then an application of a function is governed by the law:
(f v-1 .. v-n) == f-body
; with all occurrences of x-1 .. Xx-n

; replaced with v-1 .. v-n, respectively

Due to the history of languages such as BSL, we refer to this rule as the beta or
beta-value rule.

See chapter 17.2 for more on this rule.

This rule is formulated as generally as possible, so it is best to look at a
concrete example. Say the definition is

(define (poly x vy)
(+ (expt 2 x) vy))

and DrRacket is given the expression (poly 3 5). Then the first step in an
evaluation of the expression uses the beta rule:

(poly 3 5) == (+ (expt 2 3) 5) .. == (+ 8 5) == 13

In addition to beta, we need rules that determine the value of cond
expressions. These rules are algebraic even if they are not explicitly taught as
part of the standard curriculum. When the first condition is #false, the first
cond-line disappears, leaving the rest of the lines intact:

(cond == (cond
[#false ...] ; first line removed
[condition? answer?] [condition? answer?2?]

) Col)

This rule has the name condyy,..Here is cond.,:

(cond == answer—-1
[#true answer-—1]
[condition? answer?]

-)

The rule also applies when the first condition is else.
Consider the following evaluation:

(cond
[(zero? 3) 1]
[(=33) (+11)]
[else 3])
== ,; by plain arithmetic and equals-for-equals
(cond
[#false 1]
[(=33) (+11)]
[else 3])
== ; by rule condfaise
(cond
[(=33) (+11)]
[else 3])
== ,; by plain arithmetic and equals-for-equals
(cond
[#true (+ 1 1)]
[else 3])

==, by rule condgye
(+ 11)

The calculation illustrates the rules of plain arithmetic, the replacement of equals
by equals, and both cond rules.
Exercise 121. Evaluate the following expressions step-by-step:

1. (+ (* (/ 12 8) 2/3)
(- 20 (sqgrt 4)))

2. (cond
[(= 0 0) #false]
[(> 0 1) (string=? "a" "a")]
[else (= (/ 1 0) 9)])

3. (cond
[(= 2 0) #false]
[(> 2 1) (string=? "a" "a")]
[else (= (/ 1 2) 9)])

Use DrRacket’s stepper to confirm your computations. 1
Exercise 122. Suppose the program contains these definitions:

(define (f x y)
(+ ("3 x) ("vyVy)))

Show how DrRacket evaluates the following expressions, step-by-step:
1.(+ (fF12) (fF21))
2.(F 1 (* 2 3))
3.(F (F 1 (* 2 3)) 19)

Use DrRacket’s stepper to confirm your computations. 1

Meaning and Computing

The stepper tool in DrRacket mimics a student in a pre-algebra course. Unlike
you, the stepper is is extremely good at applying the laws of arithmetic and
algebra as spelled out here, and it is also extremely fast.

A scientist calls the stepper a model of DrRacket’s evaluation mechanism. Chapter 21Refining
Interpreters presents another model, an interpreter.

You can, and you ought to, use the stepper when you don’t understand how a
new language construct works. The sections on Computing suggest exercises
for this purpose, but you can make up your own examples, run them through the
stepper, and ponder why it takes certain steps.

Finally, you may also wish to use the stepper when you are surprised by the
result that a program computes. Using the stepper effectively in this way
requires practice. For example, it often means copying the program and pruning
unnecessary pieces. But once you understand how to use the stepper well this
way, you will find that this procedure clearly explains run-time errors and
logical mistakes in your programs.

BSL Errors

When DrRacket discovers that some parenthesized phrase does not belong to
BSL, it signals a syntax error. To determine whether a fully parenthesized
program is syntactically legal, DrRacket uses the grammar in figure 40 and
reasons along the lines explained above. Not all syntactically legal programs
have meaning, however.

For a nearly full list of error messages, see the last section of this intermezzo.

When DrRacket evaluates a syntactically legal program and discovers that
some operation is used on the wrong kind of value, it raises a run-time error.
Consider the syntactically legal expression (/ 1), which, as you know from
mathematics, has no value. Since BSL’s calculations must be consistent with
mathematics, DrRacket signals an error:

> (/ 1 0)
/:division by zero

Naturally it also signals an error when an expression such as (/ 1 0) is nested
deeply inside of another expression:

> (+ (*202) (/1 (- 10 10)))
/:division by zero

DrRacket’s behavior translates into our calculations as follows. When we
find an expression that is not a value and when the evaluation rules allow no
further simplification, we say the computation is stuck. This notion of stuck
corresponds to a run-time error. For example, computing the value of the above
expression leads to a stuck state:

(+ (* 20 2) (/ 1 (- 10 10)))
(+ (* 20 2) (/ 1 0))

(+ 40 (/ 1 0))

What this calculation also shows is that DrRacket eliminates the context of a
stuck expression as it signals an error. In this concrete example, it eliminates the
addition of 46 to the stuck expression (/ 1 0).

Not all nested stuck expressions end up signaling errors. Suppose a program
contains this definition:

(define (my-divide n)
(cond
[(=n 0) "inf"]
[else (/ 1 n)]))

If you now apply my-divide to @, DrRacket calculates as follows:

(my-divide 0)

(cond
[(= 0 0) "inf"]
[else (/ 1 0)])

It would obviously be wrong to say that the function signals the division-by-zero
error now, even though an evaluation of the shaded sub-expression may suggest
it. The reason is that (= 0 ©) evaluates to #true and therefore the second cond

clause does not play any role:

(my-divide 0)

(cond
[(= 0 0) "inf"]
[else (/ 1 0)])

(cond
[#true "inf"]

[else (/ 1 0)])
- llinfll

Fortunately, our laws of evaluation take care of these situations
automatically. We just need to remember when they apply. For example, in

(+ (* 20 2) (/ 20 2))

the addition cannot take place before the multiplication or division. Similarly,
the shaded division in

(cond
[(= 0 0) "inf"]
[else (/ 1 0)])

cannot be substituted for the complete cond expression until the corresponding
line is the first condition in the cond.
As a rule of thumb, it is best to keep the following in mind:

Always choose the outermost and left-most nested expression that
is ready for evaluation.

While this guideline may look simplistic, it always explains BSL’s results.
In some cases, programmers also want to define functions that raise errors.
Recall the checked version of area-of-disk from chapter 6.3:

(define (checked-area-of-disk v)
(cond

[(number? v) (area-of-disk v)]
[else (error "number expected")]))

Now imagine applying checked-area-of-disk to a string:

(- (checked-area-of-disk "a")
(checked-area-of-disk 10))

(- (cond
[(number? "a") (area-of-disk "a")]
[else (error "number expected")])
(checked-area-of-disk 10))

(- (cond
[#false (area-of-disk "a")]

[else (error "number expected")])
(checked-area-of-disk 10))

(- (error "number expected")
(checked-area-of-disk 10))

At this point you might try to evaluate the second expression, but even if you do
find out that its result is roughly 314, your calculation must eventually deal with
the error expression, which is just like a stuck expression. In short, the
calculation ends in

(error "number expected")

Boolean Expressions
Our current definition of BSL omits or and and expressions. Adding them
provides a case study of how to study new language constructs. We must first
understand their syntax and then their semantics.
Here is the revised grammar of expressions:
expr = ..

| (and expr expr)
| (or expr expr)

The grammar says that and and or are keywords, each followed by two
expressions. They are not function applications.

To understand why and and or are not BSL-defined functions, we must look
at their pragmatics first. Suppose we need to formulate a condition that
determines whether (/ 1 n) is r:

(define (check n r)
(and (not (=n0)) (= (/1 n)r)))

We formulate the condition as an and combination because we don’t wish to
divide by o accidentally. Now let’s apply check to © and 1/5:

(check 0 1/5)
== (and (not (= 0 0)) (= (/ 1 0) 1/5))

If and were an ordinary operation, we would have to evaluate both sub-
expressions, and doing so would trigger an error. Instead and simply does not
evaluate the second expression when the first one is #false, meaning, and short-
circuits evaluation.

To make sure expr -2 evaluates to a Boolean value, these abbreviations should use (if expr-2
#true #false) instead of just expr-2. We gloss over this detail here.

It would be easy to formulate evaluation rules for and and or. Another way
to explain their meaning is to translate them into other expressions:

(and exp-1 exp-2) is short for (cond
[exp-1 exp-2]

[else #false])

and

(or exp-1 exp-2) is short for (cond

[exp-1 #true]
[else exp-2])

So if you are ever in doubt about how to evaluate an and or or expression, use
the above equivalences to calculate. But we trust that you understand these
operations intuitively, and that is almost always enough.

Exercise 123. The use of if may have surprised you in another way because
this intermezzo does not mention this form elsewhere. In short, the intermezzo
appears to explain and with a form that has no explanation either. At this point,
we are relying on your intuitive understanding of if as a short-hand for cond.
Write down a rule that shows how to reformulate

(1if exp-test exp-then exp-else)

as a cond expression. 1

Constant Definitions

Programs consist not only of function definitions but also of constant definitions,
but these weren’t included in our first grammar. So here is an extended grammar
that includes constant definitions:

definition = ..
| (define name expr)

The shape of a constant definition is similar to that of a function definition.
While the keyword define distinguishes constant definitions from expressions,
it does not differentiate from function definitions. For that, a human reader must
look at the second component of the definition.

As it turns out, DrRacket has another way of dealing with function definitions; see Chapter 17.

Next we must understand what a constant definition means. For a constant
definition with a literal constant on the right-hand side, such as

(define RADIUS 5)

the variable is just a short-hand for the value. Wherever DrRacket encounters
RADIUS during an evaluation, it replaces it with 5.
For a definition with a proper expression on the right-hand side, say,

(define DIAMETER (* 2 RADIUS))

we must immediately determine the value of the expression. This process makes
use of whatever definitions precede this constant definition. Hence,

(define RADIUS 5)
(define DIAMETER (* 2 RADIUS))

is equivalent to

(define RADIUS 5)
(define DIAMETER 10)

This process even works when function definitions are involved:

(define RADIUS 10)
(define DIAMETER (* 2 RADIUS))

(define (area r) (* 3.14 (* r r)))
(define AREA-OF-RADIUS (area RADIUS))

As DrRacket steps through this sequence of definitions, it first determines that
RADIUS stands for 10, DIAMETER for 20, and area is the name of a function.
Finally, it evaluates (area RADIUS) to 314 and associates AREA-OF-RADIUS with
that value.

Mixing constant and function definitions gives rise to a new kind of run-time
error, too. Take a look at this program:

(define RADIUS 10)
(define DIAMETER (* 2 RADIUS))

(define AREA-OF-RADIUS (area RADIUS))
(define (area r) (* 3.14 (* r r)))

It is like the one above with the last two definitions swapped. For the first two
definitions, evaluation proceeds as before. For the third one, however, evaluation
goes wrong. The process calls for the evaluation of (area RADIUS). While the
definition of RADIUS precedes this expression, the definition of area has not yet
been encountered. If you were to evaluate the program with DrRacket, you
would therefore get an error, explaining that “this function is not defined.” So be
careful to use functions in constant definitions only when you know they are
defined.
Exercise 124. Evaluate the following program, step-by-step:

(define PRICE 5)
(define SALES-TAX (* 0.08 PRICE))
(define TOTAL (+ PRICE SALES-TAX))

Does the evaluation of the following program signal an error?

(define COLD-F 32)
(define COLD-C (fahrenheit->celsius COLD-F))

(define (fahrenheit->celsius f)
(* 5/9 (- f 32)))

How about the next one?

(define LEFT -100)
(define RIGHT 100)
(define (f x) (+ (* 5 (expt x 2)) 10))

(define f@LEFT (f LEFT))
(define f@RIGHT (f RIGHT))

Check your computations with DrRacket’s stepper. 1

Structure Type Definitions
As you can imagine, define-struct is the most complex BSL construct. We
have therefore saved its explanation for last. Here is the grammar:

definition = ..
| (define-struct name [name ..])

A structure type definition is a third form of definition. The keyword
distinguishes it from both function and constant definitions.
Here is a simple example:

(define-struct point [x y z])

Since point, x, y, and z are variables and the parentheses are placed according to
the grammatical pattern, it is a proper definition of a structure type. In contrast,
these two parenthesized sentences

(define-struct [point x y z])
(define-struct point x y z)

are illegal definitions because define-struct is not followed by a single
variable name and a sequence of variables in parentheses.

While the syntax of define-struct is straightforward, its meaning is
difficult to spell out with evaluation rules. As mentioned several times, a
define-struct definition defines several functions at once: a constructor,
several selectors, and a predicate. Thus the evaluation of

(define-struct ¢ [s-1 .. s-n])

introduces the following functions into the program:
1. make-c: a constructor;
2.c-s-1.. c-s-n: a series of selectors; and

3. c?: a predicate.

These functions have the same status as +, -, or *. Before we can understand the
rules that govern these new functions, however, we must return to the definition
of values. After all, one purpose of a define-struct is to introduce a class of
values that is distinct from all existing values.

Simply put, the use of define-struct extends the universe of values. To
start with, it now also contains structures, which compound several values into
one. When a program contains a define-struct definition, its evaluation
modifies the definition of values:

A value is one of: a number, a Boolean, a string, an image,

* or a structure value:

(make-c _value-1 .. _value-n)
assuming a structure type c is defined.

For example, the definition of point adds values of this shape:

(make-point 1 2 -1)
(make-point "one" "hello" "world")
(make-point 1 "one" (make-point 1 2 -1))

Now we are in a position to understand the evaluation rules of the new
functions. If c-s-1 is applied to a c structure, it returns the first component of the
value. Similarly, the second selector extracts the second component, the third
selector the third component, and so on. The relationship between the new data
constructor and the selectors is best characterized with n equations added to
BSL’s rules:

(c-s-1 (make-c V-1 .. V-n)) == V-1
(c-s-n (make-c V-1 .. V-n)) == V-n

For our running example, we get the specific equations
(point-x (make-point V U W)) ==V

(point-y (make-point V U W)) == U
(point-z (make-point V U W)) == W

When DrRacket sees (point-y (make-point 3 4 5)), it replaces the
expression with 4 while (point-x (make-point (make-point 1 2 3) 4 5))
evaluates to (make-point 1 2 3).

The predicate c? can be applied to any value. It returns #true if the value is
of kind c and #false otherwise. We can translate both parts into two equations:

(c? (make-c V-1 .. V-n)) == #true
(c? V) == #false

if v is a value not constructed with make-c. Again, the equations are best
understood in terms of our example:

(point? (make-point U V W)) == #true
(point? X) == #false

if X is a value but not a point structure.
Exercise 125. Discriminate the legal from the illegal sentences:

1. (define-struct oops [])
2. (define-struct child [parents dob date])
3. (define-struct (child person) [dob date])

Explain why the sentences are legal or illegal.
Exercise 126. Identify the values among the following expressions,
assuming the definitions area contains these structure type definitions:

(define-struct point [x y z])
(define-struct none [])

1. (make-point 1 2 3)
2. (make-point (make-point 1 2 3) 4 5)
3. (make-point (+ 1 2) 3 4)

4. (make-none)

5. (make-point (point-x (make-point 1 2 3)) 4 5)

Explain why the expressions are values or not. 1
Exercise 127. Suppose the program contains

(define-struct ball [x y speed-x speed-y])
Predict the results of evaluating the following expression:
1. (number? (make-ball 1 2 3 4))
2. (ball-speed-y (make-ball (+ 1 2) (+ 3 3) 2 3))
3. (ball-y (make-ball (+ 1 2) (+ 3 3) 2 3))
4. (ball-x (make-posn 1 2))
5. (ball-speed-y 5)

Check your predictions in the interactions area and with the stepper. 1

BSL Tests
Figure 43 presents all of BSL plus a number of testing forms.

definition
expr
test—cdse

def-expr

definition (define (name variable variable ...) expr)
(define name expr)

(define-struct name [name ...])

expr name expr expr ...)

cond [expr expr] ... [expr expr])
cond [expr expr] ... [else expr])
and expr expr expr ...)

(or expr expr expr ...)

name

number

string

image

(
(
(
(

test-case = (check-expect expr expr)

| (check-within expr expr expr)

| (check-member-of expr expr ...)
| (check-range expr expr expr)
| (check-error expr)
| (check-random expr expr)
|«

check-satisfied expr name)

Figure 43: BSL, full grammar

The general meaning of testing expressions is easy to explain. When you
click the RUN button, DrRacket collects all testing expressions and moves them
to the end of the program, retaining the order in which they appear. It then
evaluates the content of the definitions area. Each test evaluates its pieces and
then compares them with the expected outcome via some predicate. Beyond that,
tests communicate with DrRacket to collect some statistics and information on
how to display test failures.

Exercise 128. Copy the following tests into DrRacket’s definitions area:

(check-member-of "green" "red" "yellow" "grey")
(check-within (make-posn #i1.0 #il.1)
(make-posn #10.9 #i1.2) 0.01)
(check-range #i0.9 #i0.6 #i0.8)
(check-random (make-posn (random 3) (random 9))
(make—-posn (random 9) (random 3)))
(check—-satisfied 4 odd?)

Validate that all of them fail and explain why. 1

BSL Error Messages
A BSL program may signal many kinds of syntax errors. While we have
developed BSL and its error reporting system specifically for novices who, by
definition, make mistakes, error messages need some getting used to.

Below we sample the kinds of error messages that you may encounter. Each
entry in one of the listings consists of three parts:

* the code fragments that signal the error message;
* the error message; and
+ an explanation with a suggestion on how to fix the mistake.

Consider the following example, which is the worst possible error message
you may ever see:

(define (absolute n)

(cond
[< 0 (- n)] <: expected a function
[else n])) call, but there is no

open parenthesis
before this function

A cond expression consists of the keyword followed by an
arbitrarily long sequence of cond clauses. In turn, every clause
consists of two parts: a condition and an answer, both of which
are expressions. In this definition of absolute, the first clause
starts with <, which is supposed to be a condition but isn’t even
an expression according to our definition. This confuses BSL so
much that it does not “see” the open parenthesis to the left of <.
The fix is to use (< n 0) as the condition.

The highlighting of < in the function definition points to the error. Below the
definition, you can see the error message that DrRacket presents in the
interactions window if you click RUN. Study the explanation of the error on the
right to understand how to address this somewhat self-contradictory message.
And now rest assured that no other error message is even remotely as